summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_page_table_base.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/hle/kernel/k_page_table_base.cpp')
-rw-r--r--src/core/hle/kernel/k_page_table_base.cpp5716
1 files changed, 5716 insertions, 0 deletions
diff --git a/src/core/hle/kernel/k_page_table_base.cpp b/src/core/hle/kernel/k_page_table_base.cpp
new file mode 100644
index 000000000..47dc8fd35
--- /dev/null
+++ b/src/core/hle/kernel/k_page_table_base.cpp
@@ -0,0 +1,5716 @@
+// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+#include "common/scope_exit.h"
+#include "common/settings.h"
+#include "core/core.h"
+#include "core/hle/kernel/k_address_space_info.h"
+#include "core/hle/kernel/k_page_table_base.h"
+#include "core/hle/kernel/k_scoped_resource_reservation.h"
+#include "core/hle/kernel/k_system_resource.h"
+
+namespace Kernel {
+
+namespace {
+
+class KScopedLightLockPair {
+ YUZU_NON_COPYABLE(KScopedLightLockPair);
+ YUZU_NON_MOVEABLE(KScopedLightLockPair);
+
+private:
+ KLightLock* m_lower;
+ KLightLock* m_upper;
+
+public:
+ KScopedLightLockPair(KLightLock& lhs, KLightLock& rhs) {
+ // Ensure our locks are in a consistent order.
+ if (std::addressof(lhs) <= std::addressof(rhs)) {
+ m_lower = std::addressof(lhs);
+ m_upper = std::addressof(rhs);
+ } else {
+ m_lower = std::addressof(rhs);
+ m_upper = std::addressof(lhs);
+ }
+
+ // Acquire both locks.
+ m_lower->Lock();
+ if (m_lower != m_upper) {
+ m_upper->Lock();
+ }
+ }
+
+ ~KScopedLightLockPair() {
+ // Unlock the upper lock.
+ if (m_upper != nullptr && m_upper != m_lower) {
+ m_upper->Unlock();
+ }
+
+ // Unlock the lower lock.
+ if (m_lower != nullptr) {
+ m_lower->Unlock();
+ }
+ }
+
+public:
+ // Utility.
+ void TryUnlockHalf(KLightLock& lock) {
+ // Only allow unlocking if the lock is half the pair.
+ if (m_lower != m_upper) {
+ // We want to be sure the lock is one we own.
+ if (m_lower == std::addressof(lock)) {
+ lock.Unlock();
+ m_lower = nullptr;
+ } else if (m_upper == std::addressof(lock)) {
+ lock.Unlock();
+ m_upper = nullptr;
+ }
+ }
+ }
+};
+
+template <typename AddressType>
+void InvalidateInstructionCache(Core::System& system, AddressType addr, u64 size) {
+ system.InvalidateCpuInstructionCacheRange(GetInteger(addr), size);
+}
+
+template <typename AddressType>
+Result InvalidateDataCache(AddressType addr, u64 size) {
+ R_SUCCEED();
+}
+
+template <typename AddressType>
+Result StoreDataCache(AddressType addr, u64 size) {
+ R_SUCCEED();
+}
+
+template <typename AddressType>
+Result FlushDataCache(AddressType addr, u64 size) {
+ R_SUCCEED();
+}
+
+} // namespace
+
+void KPageTableBase::MemoryRange::Open() {
+ // If the range contains heap pages, open them.
+ if (this->IsHeap()) {
+ m_kernel.MemoryManager().Open(this->GetAddress(), this->GetSize() / PageSize);
+ }
+}
+
+void KPageTableBase::MemoryRange::Close() {
+ // If the range contains heap pages, close them.
+ if (this->IsHeap()) {
+ m_kernel.MemoryManager().Close(this->GetAddress(), this->GetSize() / PageSize);
+ }
+}
+
+KPageTableBase::KPageTableBase(KernelCore& kernel)
+ : m_kernel(kernel), m_system(kernel.System()), m_general_lock(kernel),
+ m_map_physical_memory_lock(kernel), m_device_map_lock(kernel) {}
+KPageTableBase::~KPageTableBase() = default;
+
+Result KPageTableBase::InitializeForKernel(bool is_64_bit, KVirtualAddress start,
+ KVirtualAddress end, Core::Memory::Memory& memory) {
+ // Initialize our members.
+ m_address_space_width =
+ static_cast<u32>(is_64_bit ? Common::BitSize<u64>() : Common::BitSize<u32>());
+ m_address_space_start = KProcessAddress(GetInteger(start));
+ m_address_space_end = KProcessAddress(GetInteger(end));
+ m_is_kernel = true;
+ m_enable_aslr = true;
+ m_enable_device_address_space_merge = false;
+
+ m_heap_region_start = 0;
+ m_heap_region_end = 0;
+ m_current_heap_end = 0;
+ m_alias_region_start = 0;
+ m_alias_region_end = 0;
+ m_stack_region_start = 0;
+ m_stack_region_end = 0;
+ m_kernel_map_region_start = 0;
+ m_kernel_map_region_end = 0;
+ m_alias_code_region_start = 0;
+ m_alias_code_region_end = 0;
+ m_code_region_start = 0;
+ m_code_region_end = 0;
+ m_max_heap_size = 0;
+ m_mapped_physical_memory_size = 0;
+ m_mapped_unsafe_physical_memory = 0;
+ m_mapped_insecure_memory = 0;
+ m_mapped_ipc_server_memory = 0;
+
+ m_memory_block_slab_manager =
+ m_kernel.GetSystemSystemResource().GetMemoryBlockSlabManagerPointer();
+ m_block_info_manager = m_kernel.GetSystemSystemResource().GetBlockInfoManagerPointer();
+ m_resource_limit = m_kernel.GetSystemResourceLimit();
+
+ m_allocate_option = KMemoryManager::EncodeOption(KMemoryManager::Pool::System,
+ KMemoryManager::Direction::FromFront);
+ m_heap_fill_value = MemoryFillValue_Zero;
+ m_ipc_fill_value = MemoryFillValue_Zero;
+ m_stack_fill_value = MemoryFillValue_Zero;
+
+ m_cached_physical_linear_region = nullptr;
+ m_cached_physical_heap_region = nullptr;
+
+ // Initialize our implementation.
+ m_impl = std::make_unique<Common::PageTable>();
+ m_impl->Resize(m_address_space_width, PageBits);
+
+ // Set the tracking memory.
+ m_memory = std::addressof(memory);
+
+ // Initialize our memory block manager.
+ R_RETURN(m_memory_block_manager.Initialize(m_address_space_start, m_address_space_end,
+ m_memory_block_slab_manager));
+}
+
+Result KPageTableBase::InitializeForProcess(Svc::CreateProcessFlag as_type, bool enable_aslr,
+ bool enable_das_merge, bool from_back,
+ KMemoryManager::Pool pool, KProcessAddress code_address,
+ size_t code_size, KSystemResource* system_resource,
+ KResourceLimit* resource_limit,
+ Core::Memory::Memory& memory) {
+ // Calculate region extents.
+ const size_t as_width = GetAddressSpaceWidth(as_type);
+ const KProcessAddress start = 0;
+ const KProcessAddress end = (1ULL << as_width);
+
+ // Validate the region.
+ ASSERT(start <= code_address);
+ ASSERT(code_address < code_address + code_size);
+ ASSERT(code_address + code_size - 1 <= end - 1);
+
+ // Define helpers.
+ auto GetSpaceStart = [&](KAddressSpaceInfo::Type type) {
+ return KAddressSpaceInfo::GetAddressSpaceStart(m_address_space_width, type);
+ };
+ auto GetSpaceSize = [&](KAddressSpaceInfo::Type type) {
+ return KAddressSpaceInfo::GetAddressSpaceSize(m_address_space_width, type);
+ };
+
+ // Set our bit width and heap/alias sizes.
+ m_address_space_width = static_cast<u32>(GetAddressSpaceWidth(as_type));
+ size_t alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Alias);
+ size_t heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Heap);
+
+ // Adjust heap/alias size if we don't have an alias region.
+ if ((as_type & Svc::CreateProcessFlag::AddressSpaceMask) ==
+ Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias) {
+ heap_region_size += alias_region_size;
+ alias_region_size = 0;
+ }
+
+ // Set code regions and determine remaining sizes.
+ KProcessAddress process_code_start;
+ KProcessAddress process_code_end;
+ size_t stack_region_size;
+ size_t kernel_map_region_size;
+ if (m_address_space_width == 39) {
+ alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Alias);
+ heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Heap);
+ stack_region_size = GetSpaceSize(KAddressSpaceInfo::Type::Stack);
+ kernel_map_region_size = GetSpaceSize(KAddressSpaceInfo::Type::MapSmall);
+ m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type::Map39Bit);
+ m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type::Map39Bit);
+ m_alias_code_region_start = m_code_region_start;
+ m_alias_code_region_end = m_code_region_end;
+ process_code_start = Common::AlignDown(GetInteger(code_address), RegionAlignment);
+ process_code_end = Common::AlignUp(GetInteger(code_address) + code_size, RegionAlignment);
+ } else {
+ stack_region_size = 0;
+ kernel_map_region_size = 0;
+ m_code_region_start = GetSpaceStart(KAddressSpaceInfo::Type::MapSmall);
+ m_code_region_end = m_code_region_start + GetSpaceSize(KAddressSpaceInfo::Type::MapSmall);
+ m_stack_region_start = m_code_region_start;
+ m_alias_code_region_start = m_code_region_start;
+ m_alias_code_region_end = GetSpaceStart(KAddressSpaceInfo::Type::MapLarge) +
+ GetSpaceSize(KAddressSpaceInfo::Type::MapLarge);
+ m_stack_region_end = m_code_region_end;
+ m_kernel_map_region_start = m_code_region_start;
+ m_kernel_map_region_end = m_code_region_end;
+ process_code_start = m_code_region_start;
+ process_code_end = m_code_region_end;
+ }
+
+ // Set other basic fields.
+ m_enable_aslr = enable_aslr;
+ m_enable_device_address_space_merge = enable_das_merge;
+ m_address_space_start = start;
+ m_address_space_end = end;
+ m_is_kernel = false;
+ m_memory_block_slab_manager = system_resource->GetMemoryBlockSlabManagerPointer();
+ m_block_info_manager = system_resource->GetBlockInfoManagerPointer();
+ m_resource_limit = resource_limit;
+
+ // Determine the region we can place our undetermineds in.
+ KProcessAddress alloc_start;
+ size_t alloc_size;
+ if ((GetInteger(process_code_start) - GetInteger(m_code_region_start)) >=
+ (GetInteger(end) - GetInteger(process_code_end))) {
+ alloc_start = m_code_region_start;
+ alloc_size = GetInteger(process_code_start) - GetInteger(m_code_region_start);
+ } else {
+ alloc_start = process_code_end;
+ alloc_size = GetInteger(end) - GetInteger(process_code_end);
+ }
+ const size_t needed_size =
+ (alias_region_size + heap_region_size + stack_region_size + kernel_map_region_size);
+ R_UNLESS(alloc_size >= needed_size, ResultOutOfMemory);
+
+ const size_t remaining_size = alloc_size - needed_size;
+
+ // Determine random placements for each region.
+ size_t alias_rnd = 0, heap_rnd = 0, stack_rnd = 0, kmap_rnd = 0;
+ if (enable_aslr) {
+ alias_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
+ RegionAlignment;
+ heap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
+ RegionAlignment;
+ stack_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
+ RegionAlignment;
+ kmap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
+ RegionAlignment;
+ }
+
+ // Setup heap and alias regions.
+ m_alias_region_start = alloc_start + alias_rnd;
+ m_alias_region_end = m_alias_region_start + alias_region_size;
+ m_heap_region_start = alloc_start + heap_rnd;
+ m_heap_region_end = m_heap_region_start + heap_region_size;
+
+ if (alias_rnd <= heap_rnd) {
+ m_heap_region_start += alias_region_size;
+ m_heap_region_end += alias_region_size;
+ } else {
+ m_alias_region_start += heap_region_size;
+ m_alias_region_end += heap_region_size;
+ }
+
+ // Setup stack region.
+ if (stack_region_size) {
+ m_stack_region_start = alloc_start + stack_rnd;
+ m_stack_region_end = m_stack_region_start + stack_region_size;
+
+ if (alias_rnd < stack_rnd) {
+ m_stack_region_start += alias_region_size;
+ m_stack_region_end += alias_region_size;
+ } else {
+ m_alias_region_start += stack_region_size;
+ m_alias_region_end += stack_region_size;
+ }
+
+ if (heap_rnd < stack_rnd) {
+ m_stack_region_start += heap_region_size;
+ m_stack_region_end += heap_region_size;
+ } else {
+ m_heap_region_start += stack_region_size;
+ m_heap_region_end += stack_region_size;
+ }
+ }
+
+ // Setup kernel map region.
+ if (kernel_map_region_size) {
+ m_kernel_map_region_start = alloc_start + kmap_rnd;
+ m_kernel_map_region_end = m_kernel_map_region_start + kernel_map_region_size;
+
+ if (alias_rnd < kmap_rnd) {
+ m_kernel_map_region_start += alias_region_size;
+ m_kernel_map_region_end += alias_region_size;
+ } else {
+ m_alias_region_start += kernel_map_region_size;
+ m_alias_region_end += kernel_map_region_size;
+ }
+
+ if (heap_rnd < kmap_rnd) {
+ m_kernel_map_region_start += heap_region_size;
+ m_kernel_map_region_end += heap_region_size;
+ } else {
+ m_heap_region_start += kernel_map_region_size;
+ m_heap_region_end += kernel_map_region_size;
+ }
+
+ if (stack_region_size) {
+ if (stack_rnd < kmap_rnd) {
+ m_kernel_map_region_start += stack_region_size;
+ m_kernel_map_region_end += stack_region_size;
+ } else {
+ m_stack_region_start += kernel_map_region_size;
+ m_stack_region_end += kernel_map_region_size;
+ }
+ }
+ }
+
+ // Set heap and fill members.
+ m_current_heap_end = m_heap_region_start;
+ m_max_heap_size = 0;
+ m_mapped_physical_memory_size = 0;
+ m_mapped_unsafe_physical_memory = 0;
+ m_mapped_insecure_memory = 0;
+ m_mapped_ipc_server_memory = 0;
+
+ // const bool fill_memory = KTargetSystem::IsDebugMemoryFillEnabled();
+ const bool fill_memory = false;
+ m_heap_fill_value = fill_memory ? MemoryFillValue_Heap : MemoryFillValue_Zero;
+ m_ipc_fill_value = fill_memory ? MemoryFillValue_Ipc : MemoryFillValue_Zero;
+ m_stack_fill_value = fill_memory ? MemoryFillValue_Stack : MemoryFillValue_Zero;
+
+ // Set allocation option.
+ m_allocate_option =
+ KMemoryManager::EncodeOption(pool, from_back ? KMemoryManager::Direction::FromBack
+ : KMemoryManager::Direction::FromFront);
+
+ // Ensure that we regions inside our address space.
+ auto IsInAddressSpace = [&](KProcessAddress addr) {
+ return m_address_space_start <= addr && addr <= m_address_space_end;
+ };
+ ASSERT(IsInAddressSpace(m_alias_region_start));
+ ASSERT(IsInAddressSpace(m_alias_region_end));
+ ASSERT(IsInAddressSpace(m_heap_region_start));
+ ASSERT(IsInAddressSpace(m_heap_region_end));
+ ASSERT(IsInAddressSpace(m_stack_region_start));
+ ASSERT(IsInAddressSpace(m_stack_region_end));
+ ASSERT(IsInAddressSpace(m_kernel_map_region_start));
+ ASSERT(IsInAddressSpace(m_kernel_map_region_end));
+
+ // Ensure that we selected regions that don't overlap.
+ const KProcessAddress alias_start = m_alias_region_start;
+ const KProcessAddress alias_last = m_alias_region_end - 1;
+ const KProcessAddress heap_start = m_heap_region_start;
+ const KProcessAddress heap_last = m_heap_region_end - 1;
+ const KProcessAddress stack_start = m_stack_region_start;
+ const KProcessAddress stack_last = m_stack_region_end - 1;
+ const KProcessAddress kmap_start = m_kernel_map_region_start;
+ const KProcessAddress kmap_last = m_kernel_map_region_end - 1;
+ ASSERT(alias_last < heap_start || heap_last < alias_start);
+ ASSERT(alias_last < stack_start || stack_last < alias_start);
+ ASSERT(alias_last < kmap_start || kmap_last < alias_start);
+ ASSERT(heap_last < stack_start || stack_last < heap_start);
+ ASSERT(heap_last < kmap_start || kmap_last < heap_start);
+
+ // Initialize our implementation.
+ m_impl = std::make_unique<Common::PageTable>();
+ m_impl->Resize(m_address_space_width, PageBits);
+
+ // Set the tracking memory.
+ m_memory = std::addressof(memory);
+
+ // Initialize our memory block manager.
+ R_RETURN(m_memory_block_manager.Initialize(m_address_space_start, m_address_space_end,
+ m_memory_block_slab_manager));
+}
+
+void KPageTableBase::Finalize() {
+ auto HostUnmapCallback = [&](KProcessAddress addr, u64 size) {
+ if (Settings::IsFastmemEnabled()) {
+ m_system.DeviceMemory().buffer.Unmap(GetInteger(addr), size);
+ }
+ };
+
+ // Finalize memory blocks.
+ m_memory_block_manager.Finalize(m_memory_block_slab_manager, std::move(HostUnmapCallback));
+
+ // Free any unsafe mapped memory.
+ if (m_mapped_unsafe_physical_memory) {
+ UNIMPLEMENTED();
+ }
+
+ // Release any insecure mapped memory.
+ if (m_mapped_insecure_memory) {
+ if (auto* const insecure_resource_limit =
+ KSystemControl::GetInsecureMemoryResourceLimit(m_kernel);
+ insecure_resource_limit != nullptr) {
+ insecure_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
+ m_mapped_insecure_memory);
+ }
+ }
+
+ // Release any ipc server memory.
+ if (m_mapped_ipc_server_memory) {
+ m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
+ m_mapped_ipc_server_memory);
+ }
+
+ // Close the backing page table, as the destructor is not called for guest objects.
+ m_impl.reset();
+}
+
+KProcessAddress KPageTableBase::GetRegionAddress(Svc::MemoryState state) const {
+ switch (state) {
+ case Svc::MemoryState::Free:
+ case Svc::MemoryState::Kernel:
+ return m_address_space_start;
+ case Svc::MemoryState::Normal:
+ return m_heap_region_start;
+ case Svc::MemoryState::Ipc:
+ case Svc::MemoryState::NonSecureIpc:
+ case Svc::MemoryState::NonDeviceIpc:
+ return m_alias_region_start;
+ case Svc::MemoryState::Stack:
+ return m_stack_region_start;
+ case Svc::MemoryState::Static:
+ case Svc::MemoryState::ThreadLocal:
+ return m_kernel_map_region_start;
+ case Svc::MemoryState::Io:
+ case Svc::MemoryState::Shared:
+ case Svc::MemoryState::AliasCode:
+ case Svc::MemoryState::AliasCodeData:
+ case Svc::MemoryState::Transfered:
+ case Svc::MemoryState::SharedTransfered:
+ case Svc::MemoryState::SharedCode:
+ case Svc::MemoryState::GeneratedCode:
+ case Svc::MemoryState::CodeOut:
+ case Svc::MemoryState::Coverage:
+ case Svc::MemoryState::Insecure:
+ return m_alias_code_region_start;
+ case Svc::MemoryState::Code:
+ case Svc::MemoryState::CodeData:
+ return m_code_region_start;
+ default:
+ UNREACHABLE();
+ }
+}
+
+size_t KPageTableBase::GetRegionSize(Svc::MemoryState state) const {
+ switch (state) {
+ case Svc::MemoryState::Free:
+ case Svc::MemoryState::Kernel:
+ return m_address_space_end - m_address_space_start;
+ case Svc::MemoryState::Normal:
+ return m_heap_region_end - m_heap_region_start;
+ case Svc::MemoryState::Ipc:
+ case Svc::MemoryState::NonSecureIpc:
+ case Svc::MemoryState::NonDeviceIpc:
+ return m_alias_region_end - m_alias_region_start;
+ case Svc::MemoryState::Stack:
+ return m_stack_region_end - m_stack_region_start;
+ case Svc::MemoryState::Static:
+ case Svc::MemoryState::ThreadLocal:
+ return m_kernel_map_region_end - m_kernel_map_region_start;
+ case Svc::MemoryState::Io:
+ case Svc::MemoryState::Shared:
+ case Svc::MemoryState::AliasCode:
+ case Svc::MemoryState::AliasCodeData:
+ case Svc::MemoryState::Transfered:
+ case Svc::MemoryState::SharedTransfered:
+ case Svc::MemoryState::SharedCode:
+ case Svc::MemoryState::GeneratedCode:
+ case Svc::MemoryState::CodeOut:
+ case Svc::MemoryState::Coverage:
+ case Svc::MemoryState::Insecure:
+ return m_alias_code_region_end - m_alias_code_region_start;
+ case Svc::MemoryState::Code:
+ case Svc::MemoryState::CodeData:
+ return m_code_region_end - m_code_region_start;
+ default:
+ UNREACHABLE();
+ }
+}
+
+bool KPageTableBase::CanContain(KProcessAddress addr, size_t size, Svc::MemoryState state) const {
+ const KProcessAddress end = addr + size;
+ const KProcessAddress last = end - 1;
+
+ const KProcessAddress region_start = this->GetRegionAddress(state);
+ const size_t region_size = this->GetRegionSize(state);
+
+ const bool is_in_region =
+ region_start <= addr && addr < end && last <= region_start + region_size - 1;
+ const bool is_in_heap = !(end <= m_heap_region_start || m_heap_region_end <= addr ||
+ m_heap_region_start == m_heap_region_end);
+ const bool is_in_alias = !(end <= m_alias_region_start || m_alias_region_end <= addr ||
+ m_alias_region_start == m_alias_region_end);
+ switch (state) {
+ case Svc::MemoryState::Free:
+ case Svc::MemoryState::Kernel:
+ return is_in_region;
+ case Svc::MemoryState::Io:
+ case Svc::MemoryState::Static:
+ case Svc::MemoryState::Code:
+ case Svc::MemoryState::CodeData:
+ case Svc::MemoryState::Shared:
+ case Svc::MemoryState::AliasCode:
+ case Svc::MemoryState::AliasCodeData:
+ case Svc::MemoryState::Stack:
+ case Svc::MemoryState::ThreadLocal:
+ case Svc::MemoryState::Transfered:
+ case Svc::MemoryState::SharedTransfered:
+ case Svc::MemoryState::SharedCode:
+ case Svc::MemoryState::GeneratedCode:
+ case Svc::MemoryState::CodeOut:
+ case Svc::MemoryState::Coverage:
+ case Svc::MemoryState::Insecure:
+ return is_in_region && !is_in_heap && !is_in_alias;
+ case Svc::MemoryState::Normal:
+ ASSERT(is_in_heap);
+ return is_in_region && !is_in_alias;
+ case Svc::MemoryState::Ipc:
+ case Svc::MemoryState::NonSecureIpc:
+ case Svc::MemoryState::NonDeviceIpc:
+ ASSERT(is_in_alias);
+ return is_in_region && !is_in_heap;
+ default:
+ return false;
+ }
+}
+
+Result KPageTableBase::CheckMemoryState(const KMemoryInfo& info, KMemoryState state_mask,
+ KMemoryState state, KMemoryPermission perm_mask,
+ KMemoryPermission perm, KMemoryAttribute attr_mask,
+ KMemoryAttribute attr) const {
+ // Validate the states match expectation.
+ R_UNLESS((info.m_state & state_mask) == state, ResultInvalidCurrentMemory);
+ R_UNLESS((info.m_permission & perm_mask) == perm, ResultInvalidCurrentMemory);
+ R_UNLESS((info.m_attribute & attr_mask) == attr, ResultInvalidCurrentMemory);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CheckMemoryStateContiguous(size_t* out_blocks_needed, KProcessAddress addr,
+ size_t size, KMemoryState state_mask,
+ KMemoryState state, KMemoryPermission perm_mask,
+ KMemoryPermission perm,
+ KMemoryAttribute attr_mask,
+ KMemoryAttribute attr) const {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ // Get information about the first block.
+ const KProcessAddress last_addr = addr + size - 1;
+ KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(addr);
+ KMemoryInfo info = it->GetMemoryInfo();
+
+ // If the start address isn't aligned, we need a block.
+ const size_t blocks_for_start_align =
+ (Common::AlignDown(GetInteger(addr), PageSize) != info.GetAddress()) ? 1 : 0;
+
+ while (true) {
+ // Validate against the provided masks.
+ R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
+
+ // Break once we're done.
+ if (last_addr <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance our iterator.
+ it++;
+ ASSERT(it != m_memory_block_manager.cend());
+ info = it->GetMemoryInfo();
+ }
+
+ // If the end address isn't aligned, we need a block.
+ const size_t blocks_for_end_align =
+ (Common::AlignUp(GetInteger(addr) + size, PageSize) != info.GetEndAddress()) ? 1 : 0;
+
+ if (out_blocks_needed != nullptr) {
+ *out_blocks_needed = blocks_for_start_align + blocks_for_end_align;
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
+ KMemoryAttribute* out_attr, size_t* out_blocks_needed,
+ KMemoryBlockManager::const_iterator it,
+ KProcessAddress last_addr, KMemoryState state_mask,
+ KMemoryState state, KMemoryPermission perm_mask,
+ KMemoryPermission perm, KMemoryAttribute attr_mask,
+ KMemoryAttribute attr, KMemoryAttribute ignore_attr) const {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ // Get information about the first block.
+ KMemoryInfo info = it->GetMemoryInfo();
+
+ // Validate all blocks in the range have correct state.
+ const KMemoryState first_state = info.m_state;
+ const KMemoryPermission first_perm = info.m_permission;
+ const KMemoryAttribute first_attr = info.m_attribute;
+ while (true) {
+ // Validate the current block.
+ R_UNLESS(info.m_state == first_state, ResultInvalidCurrentMemory);
+ R_UNLESS(info.m_permission == first_perm, ResultInvalidCurrentMemory);
+ R_UNLESS((info.m_attribute | ignore_attr) == (first_attr | ignore_attr),
+ ResultInvalidCurrentMemory);
+
+ // Validate against the provided masks.
+ R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
+
+ // Break once we're done.
+ if (last_addr <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance our iterator.
+ it++;
+ ASSERT(it != m_memory_block_manager.cend());
+ info = it->GetMemoryInfo();
+ }
+
+ // Write output state.
+ if (out_state != nullptr) {
+ *out_state = first_state;
+ }
+ if (out_perm != nullptr) {
+ *out_perm = first_perm;
+ }
+ if (out_attr != nullptr) {
+ *out_attr = first_attr & ~ignore_attr;
+ }
+
+ // If the end address isn't aligned, we need a block.
+ if (out_blocks_needed != nullptr) {
+ const size_t blocks_for_end_align =
+ (Common::AlignDown(GetInteger(last_addr), PageSize) + PageSize != info.GetEndAddress())
+ ? 1
+ : 0;
+ *out_blocks_needed = blocks_for_end_align;
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
+ KMemoryAttribute* out_attr, size_t* out_blocks_needed,
+ KProcessAddress addr, size_t size, KMemoryState state_mask,
+ KMemoryState state, KMemoryPermission perm_mask,
+ KMemoryPermission perm, KMemoryAttribute attr_mask,
+ KMemoryAttribute attr, KMemoryAttribute ignore_attr) const {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ // Check memory state.
+ const KProcessAddress last_addr = addr + size - 1;
+ KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(addr);
+ R_TRY(this->CheckMemoryState(out_state, out_perm, out_attr, out_blocks_needed, it, last_addr,
+ state_mask, state, perm_mask, perm, attr_mask, attr, ignore_attr));
+
+ // If the start address isn't aligned, we need a block.
+ if (out_blocks_needed != nullptr &&
+ Common::AlignDown(GetInteger(addr), PageSize) != it->GetAddress()) {
+ ++(*out_blocks_needed);
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::LockMemoryAndOpen(KPageGroup* out_pg, KPhysicalAddress* out_paddr,
+ KProcessAddress addr, size_t size, KMemoryState state_mask,
+ KMemoryState state, KMemoryPermission perm_mask,
+ KMemoryPermission perm, KMemoryAttribute attr_mask,
+ KMemoryAttribute attr, KMemoryPermission new_perm,
+ KMemoryAttribute lock_attr) {
+ // Validate basic preconditions.
+ ASSERT(False(lock_attr & attr));
+ ASSERT(False(lock_attr & (KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared)));
+
+ // Validate the lock request.
+ const size_t num_pages = size / PageSize;
+ R_UNLESS(this->Contains(addr, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check that the output page group is empty, if it exists.
+ if (out_pg) {
+ ASSERT(out_pg->GetNumPages() == 0);
+ }
+
+ // Check the state.
+ KMemoryState old_state;
+ KMemoryPermission old_perm;
+ KMemoryAttribute old_attr;
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm),
+ std::addressof(old_attr), std::addressof(num_allocator_blocks),
+ addr, size, state_mask | KMemoryState::FlagReferenceCounted,
+ state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
+ attr_mask, attr));
+
+ // Get the physical address, if we're supposed to.
+ if (out_paddr != nullptr) {
+ ASSERT(this->GetPhysicalAddressLocked(out_paddr, addr));
+ }
+
+ // Make the page group, if we're supposed to.
+ if (out_pg != nullptr) {
+ R_TRY(this->MakePageGroup(*out_pg, addr, num_pages));
+ }
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // Decide on new perm and attr.
+ new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm;
+ KMemoryAttribute new_attr = old_attr | static_cast<KMemoryAttribute>(lock_attr);
+
+ // Update permission, if we need to.
+ if (new_perm != old_perm) {
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ const KPageProperties properties = {new_perm, false,
+ True(old_attr & KMemoryAttribute::Uncached),
+ DisableMergeAttribute::DisableHeadBodyTail};
+ R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties,
+ OperationType::ChangePermissions, false));
+ }
+
+ // Apply the memory block updates.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
+ new_attr, KMemoryBlockDisableMergeAttribute::Locked,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // If we have an output group, open.
+ if (out_pg) {
+ out_pg->Open();
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnlockMemory(KProcessAddress addr, size_t size, KMemoryState state_mask,
+ KMemoryState state, KMemoryPermission perm_mask,
+ KMemoryPermission perm, KMemoryAttribute attr_mask,
+ KMemoryAttribute attr, KMemoryPermission new_perm,
+ KMemoryAttribute lock_attr, const KPageGroup* pg) {
+ // Validate basic preconditions.
+ ASSERT((attr_mask & lock_attr) == lock_attr);
+ ASSERT((attr & lock_attr) == lock_attr);
+
+ // Validate the unlock request.
+ const size_t num_pages = size / PageSize;
+ R_UNLESS(this->Contains(addr, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the state.
+ KMemoryState old_state;
+ KMemoryPermission old_perm;
+ KMemoryAttribute old_attr;
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm),
+ std::addressof(old_attr), std::addressof(num_allocator_blocks),
+ addr, size, state_mask | KMemoryState::FlagReferenceCounted,
+ state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
+ attr_mask, attr));
+
+ // Check the page group.
+ if (pg != nullptr) {
+ R_UNLESS(this->IsValidPageGroup(*pg, addr, num_pages), ResultInvalidMemoryRegion);
+ }
+
+ // Decide on new perm and attr.
+ new_perm = (new_perm != KMemoryPermission::None) ? new_perm : old_perm;
+ KMemoryAttribute new_attr = old_attr & ~static_cast<KMemoryAttribute>(lock_attr);
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // Update permission, if we need to.
+ if (new_perm != old_perm) {
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ const KPageProperties properties = {new_perm, false,
+ True(old_attr & KMemoryAttribute::Uncached),
+ DisableMergeAttribute::EnableAndMergeHeadBodyTail};
+ R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties,
+ OperationType::ChangePermissions, false));
+ }
+
+ // Apply the memory block updates.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
+ new_attr, KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Locked);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::QueryInfoImpl(KMemoryInfo* out_info, Svc::PageInfo* out_page,
+ KProcessAddress address) const {
+ ASSERT(this->IsLockedByCurrentThread());
+ ASSERT(out_info != nullptr);
+ ASSERT(out_page != nullptr);
+
+ const KMemoryBlock* block = m_memory_block_manager.FindBlock(address);
+ R_UNLESS(block != nullptr, ResultInvalidCurrentMemory);
+
+ *out_info = block->GetMemoryInfo();
+ out_page->flags = 0;
+ R_SUCCEED();
+}
+
+Result KPageTableBase::QueryMappingImpl(KProcessAddress* out, KPhysicalAddress address, size_t size,
+ Svc::MemoryState state) const {
+ ASSERT(!this->IsLockedByCurrentThread());
+ ASSERT(out != nullptr);
+
+ const KProcessAddress region_start = this->GetRegionAddress(state);
+ const size_t region_size = this->GetRegionSize(state);
+
+ // Check that the address/size are potentially valid.
+ R_UNLESS((address < address + size), ResultNotFound);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ auto& impl = this->GetImpl();
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry cur_entry = {.phys_addr = 0, .block_size = 0};
+ bool cur_valid = false;
+ TraversalEntry next_entry;
+ bool next_valid;
+ size_t tot_size = 0;
+
+ next_valid =
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), region_start);
+ next_entry.block_size =
+ (next_entry.block_size - (GetInteger(region_start) & (next_entry.block_size - 1)));
+
+ // Iterate, looking for entry.
+ while (true) {
+ if ((!next_valid && !cur_valid) ||
+ (next_valid && cur_valid &&
+ next_entry.phys_addr == cur_entry.phys_addr + cur_entry.block_size)) {
+ cur_entry.block_size += next_entry.block_size;
+ } else {
+ if (cur_valid && cur_entry.phys_addr <= address &&
+ address + size <= cur_entry.phys_addr + cur_entry.block_size) {
+ // Check if this region is valid.
+ const KProcessAddress mapped_address =
+ (region_start + tot_size) + GetInteger(address - cur_entry.phys_addr);
+ if (R_SUCCEEDED(this->CheckMemoryState(
+ mapped_address, size, KMemoryState::Mask, static_cast<KMemoryState>(state),
+ KMemoryPermission::UserRead, KMemoryPermission::UserRead,
+ KMemoryAttribute::None, KMemoryAttribute::None))) {
+ // It is!
+ *out = mapped_address;
+ R_SUCCEED();
+ }
+ }
+
+ // Update tracking variables.
+ tot_size += cur_entry.block_size;
+ cur_entry = next_entry;
+ cur_valid = next_valid;
+ }
+
+ if (cur_entry.block_size + tot_size >= region_size) {
+ break;
+ }
+
+ next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ }
+
+ // Check the last entry.
+ R_UNLESS(cur_valid, ResultNotFound);
+ R_UNLESS(cur_entry.phys_addr <= address, ResultNotFound);
+ R_UNLESS(address + size <= cur_entry.phys_addr + cur_entry.block_size, ResultNotFound);
+
+ // Check if the last region is valid.
+ const KProcessAddress mapped_address =
+ (region_start + tot_size) + GetInteger(address - cur_entry.phys_addr);
+ R_TRY_CATCH(this->CheckMemoryState(mapped_address, size, KMemoryState::All,
+ static_cast<KMemoryState>(state),
+ KMemoryPermission::UserRead, KMemoryPermission::UserRead,
+ KMemoryAttribute::None, KMemoryAttribute::None)) {
+ R_CONVERT_ALL(ResultNotFound);
+ }
+ R_END_TRY_CATCH;
+
+ // We found the region.
+ *out = mapped_address;
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapMemory(KProcessAddress dst_address, KProcessAddress src_address,
+ size_t size) {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Validate that the source address's state is valid.
+ KMemoryState src_state;
+ size_t num_src_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(src_state), nullptr, nullptr,
+ std::addressof(num_src_allocator_blocks), src_address, size,
+ KMemoryState::FlagCanAlias, KMemoryState::FlagCanAlias,
+ KMemoryPermission::All, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::All, KMemoryAttribute::None));
+
+ // Validate that the dst address's state is valid.
+ size_t num_dst_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_dst_allocator_blocks), dst_address, size,
+ KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+
+ // Create an update allocator for the source.
+ Result src_allocator_result;
+ KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
+ m_memory_block_slab_manager,
+ num_src_allocator_blocks);
+ R_TRY(src_allocator_result);
+
+ // Create an update allocator for the destination.
+ Result dst_allocator_result;
+ KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
+ m_memory_block_slab_manager,
+ num_dst_allocator_blocks);
+ R_TRY(dst_allocator_result);
+
+ // Map the memory.
+ {
+ // Determine the number of pages being operated on.
+ const size_t num_pages = size / PageSize;
+
+ // Create page groups for the memory being unmapped.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+
+ // Create the page group representing the source.
+ R_TRY(this->MakePageGroup(pg, src_address, num_pages));
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Reprotect the source as kernel-read/not mapped.
+ const KMemoryPermission new_src_perm = static_cast<KMemoryPermission>(
+ KMemoryPermission::KernelRead | KMemoryPermission::NotMapped);
+ const KMemoryAttribute new_src_attr = KMemoryAttribute::Locked;
+ const KPageProperties src_properties = {new_src_perm, false, false,
+ DisableMergeAttribute::DisableHeadBodyTail};
+ R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false, src_properties,
+ OperationType::ChangePermissions, false));
+
+ // Ensure that we unprotect the source pages on failure.
+ ON_RESULT_FAILURE {
+ const KPageProperties unprotect_properties = {
+ KMemoryPermission::UserReadWrite, false, false,
+ DisableMergeAttribute::EnableHeadBodyTail};
+ R_ASSERT(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false,
+ unprotect_properties, OperationType::ChangePermissions, true));
+ };
+
+ // Map the alias pages.
+ const KPageProperties dst_map_properties = {KMemoryPermission::UserReadWrite, false, false,
+ DisableMergeAttribute::DisableHead};
+ R_TRY(this->MapPageGroupImpl(updater.GetPageList(), dst_address, pg, dst_map_properties,
+ false));
+
+ // Apply the memory block updates.
+ m_memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages,
+ src_state, new_src_perm, new_src_attr,
+ KMemoryBlockDisableMergeAttribute::Locked,
+ KMemoryBlockDisableMergeAttribute::None);
+ m_memory_block_manager.Update(
+ std::addressof(dst_allocator), dst_address, num_pages, KMemoryState::Stack,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal, KMemoryBlockDisableMergeAttribute::None);
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnmapMemory(KProcessAddress dst_address, KProcessAddress src_address,
+ size_t size) {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Validate that the source address's state is valid.
+ KMemoryState src_state;
+ size_t num_src_allocator_blocks;
+ R_TRY(this->CheckMemoryState(
+ std::addressof(src_state), nullptr, nullptr, std::addressof(num_src_allocator_blocks),
+ src_address, size, KMemoryState::FlagCanAlias, KMemoryState::FlagCanAlias,
+ KMemoryPermission::All, KMemoryPermission::NotMapped | KMemoryPermission::KernelRead,
+ KMemoryAttribute::All, KMemoryAttribute::Locked));
+
+ // Validate that the dst address's state is valid.
+ KMemoryPermission dst_perm;
+ size_t num_dst_allocator_blocks;
+ R_TRY(this->CheckMemoryState(
+ nullptr, std::addressof(dst_perm), nullptr, std::addressof(num_dst_allocator_blocks),
+ dst_address, size, KMemoryState::All, KMemoryState::Stack, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All, KMemoryAttribute::None));
+
+ // Create an update allocator for the source.
+ Result src_allocator_result;
+ KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
+ m_memory_block_slab_manager,
+ num_src_allocator_blocks);
+ R_TRY(src_allocator_result);
+
+ // Create an update allocator for the destination.
+ Result dst_allocator_result;
+ KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
+ m_memory_block_slab_manager,
+ num_dst_allocator_blocks);
+ R_TRY(dst_allocator_result);
+
+ // Unmap the memory.
+ {
+ // Determine the number of pages being operated on.
+ const size_t num_pages = size / PageSize;
+
+ // Create page groups for the memory being unmapped.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+
+ // Create the page group representing the destination.
+ R_TRY(this->MakePageGroup(pg, dst_address, num_pages));
+
+ // Ensure the page group is the valid for the source.
+ R_UNLESS(this->IsValidPageGroup(pg, src_address, num_pages), ResultInvalidMemoryRegion);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Unmap the aliased copy of the pages.
+ const KPageProperties dst_unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false,
+ dst_unmap_properties, OperationType::Unmap, false));
+
+ // Ensure that we re-map the aliased pages on failure.
+ ON_RESULT_FAILURE {
+ this->RemapPageGroup(updater.GetPageList(), dst_address, size, pg);
+ };
+
+ // Try to set the permissions for the source pages back to what they should be.
+ const KPageProperties src_properties = {KMemoryPermission::UserReadWrite, false, false,
+ DisableMergeAttribute::EnableAndMergeHeadBodyTail};
+ R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false, src_properties,
+ OperationType::ChangePermissions, false));
+
+ // Apply the memory block updates.
+ m_memory_block_manager.Update(
+ std::addressof(src_allocator), src_address, num_pages, src_state,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Locked);
+ m_memory_block_manager.Update(
+ std::addressof(dst_allocator), dst_address, num_pages, KMemoryState::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Normal);
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address,
+ size_t size) {
+ // Validate the mapping request.
+ R_UNLESS(this->CanContain(dst_address, size, KMemoryState::AliasCode),
+ ResultInvalidMemoryRegion);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Verify that the source memory is normal heap.
+ KMemoryState src_state;
+ KMemoryPermission src_perm;
+ size_t num_src_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(src_state), std::addressof(src_perm), nullptr,
+ std::addressof(num_src_allocator_blocks), src_address, size,
+ KMemoryState::All, KMemoryState::Normal, KMemoryPermission::All,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
+ KMemoryAttribute::None));
+
+ // Verify that the destination memory is unmapped.
+ size_t num_dst_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_dst_allocator_blocks), dst_address, size,
+ KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+
+ // Create an update allocator for the source.
+ Result src_allocator_result;
+ KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
+ m_memory_block_slab_manager,
+ num_src_allocator_blocks);
+ R_TRY(src_allocator_result);
+
+ // Create an update allocator for the destination.
+ Result dst_allocator_result;
+ KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
+ m_memory_block_slab_manager,
+ num_dst_allocator_blocks);
+ R_TRY(dst_allocator_result);
+
+ // Map the code memory.
+ {
+ // Determine the number of pages being operated on.
+ const size_t num_pages = size / PageSize;
+
+ // Create page groups for the memory being unmapped.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+
+ // Create the page group representing the source.
+ R_TRY(this->MakePageGroup(pg, src_address, num_pages));
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Reprotect the source as kernel-read/not mapped.
+ const KMemoryPermission new_perm = static_cast<KMemoryPermission>(
+ KMemoryPermission::KernelRead | KMemoryPermission::NotMapped);
+ const KPageProperties src_properties = {new_perm, false, false,
+ DisableMergeAttribute::DisableHeadBodyTail};
+ R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false, src_properties,
+ OperationType::ChangePermissions, false));
+
+ // Ensure that we unprotect the source pages on failure.
+ ON_RESULT_FAILURE {
+ const KPageProperties unprotect_properties = {
+ src_perm, false, false, DisableMergeAttribute::EnableHeadBodyTail};
+ R_ASSERT(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false,
+ unprotect_properties, OperationType::ChangePermissions, true));
+ };
+
+ // Map the alias pages.
+ const KPageProperties dst_properties = {new_perm, false, false,
+ DisableMergeAttribute::DisableHead};
+ R_TRY(
+ this->MapPageGroupImpl(updater.GetPageList(), dst_address, pg, dst_properties, false));
+
+ // Apply the memory block updates.
+ m_memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages,
+ src_state, new_perm, KMemoryAttribute::Locked,
+ KMemoryBlockDisableMergeAttribute::Locked,
+ KMemoryBlockDisableMergeAttribute::None);
+ m_memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages,
+ KMemoryState::AliasCode, new_perm, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnmapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address,
+ size_t size) {
+ // Validate the mapping request.
+ R_UNLESS(this->CanContain(dst_address, size, KMemoryState::AliasCode),
+ ResultInvalidMemoryRegion);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Verify that the source memory is locked normal heap.
+ size_t num_src_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_src_allocator_blocks), src_address, size,
+ KMemoryState::All, KMemoryState::Normal, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::Locked));
+
+ // Verify that the destination memory is aliasable code.
+ size_t num_dst_allocator_blocks;
+ R_TRY(this->CheckMemoryStateContiguous(
+ std::addressof(num_dst_allocator_blocks), dst_address, size, KMemoryState::FlagCanCodeAlias,
+ KMemoryState::FlagCanCodeAlias, KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::All & ~KMemoryAttribute::PermissionLocked, KMemoryAttribute::None));
+
+ // Determine whether any pages being unmapped are code.
+ bool any_code_pages = false;
+ {
+ KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(dst_address);
+ while (true) {
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // Check if the memory has code flag.
+ if (True(info.GetState() & KMemoryState::FlagCode)) {
+ any_code_pages = true;
+ break;
+ }
+
+ // Check if we're done.
+ if (dst_address + size - 1 <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ ++it;
+ }
+ }
+
+ // Ensure that we maintain the instruction cache.
+ bool reprotected_pages = false;
+ SCOPE_EXIT({
+ if (reprotected_pages && any_code_pages) {
+ InvalidateInstructionCache(m_system, dst_address, size);
+ }
+ });
+
+ // Unmap.
+ {
+ // Determine the number of pages being operated on.
+ const size_t num_pages = size / PageSize;
+
+ // Create page groups for the memory being unmapped.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+
+ // Create the page group representing the destination.
+ R_TRY(this->MakePageGroup(pg, dst_address, num_pages));
+
+ // Verify that the page group contains the same pages as the source.
+ R_UNLESS(this->IsValidPageGroup(pg, src_address, num_pages), ResultInvalidMemoryRegion);
+
+ // Create an update allocator for the source.
+ Result src_allocator_result;
+ KMemoryBlockManagerUpdateAllocator src_allocator(std::addressof(src_allocator_result),
+ m_memory_block_slab_manager,
+ num_src_allocator_blocks);
+ R_TRY(src_allocator_result);
+
+ // Create an update allocator for the destination.
+ Result dst_allocator_result;
+ KMemoryBlockManagerUpdateAllocator dst_allocator(std::addressof(dst_allocator_result),
+ m_memory_block_slab_manager,
+ num_dst_allocator_blocks);
+ R_TRY(dst_allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Unmap the aliased copy of the pages.
+ const KPageProperties dst_unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false,
+ dst_unmap_properties, OperationType::Unmap, false));
+
+ // Ensure that we re-map the aliased pages on failure.
+ ON_RESULT_FAILURE {
+ this->RemapPageGroup(updater.GetPageList(), dst_address, size, pg);
+ };
+
+ // Try to set the permissions for the source pages back to what they should be.
+ const KPageProperties src_properties = {KMemoryPermission::UserReadWrite, false, false,
+ DisableMergeAttribute::EnableAndMergeHeadBodyTail};
+ R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, 0, false, src_properties,
+ OperationType::ChangePermissions, false));
+
+ // Apply the memory block updates.
+ m_memory_block_manager.Update(
+ std::addressof(dst_allocator), dst_address, num_pages, KMemoryState::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Normal);
+ m_memory_block_manager.Update(
+ std::addressof(src_allocator), src_address, num_pages, KMemoryState::Normal,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None, KMemoryBlockDisableMergeAttribute::Locked);
+
+ // Note that we reprotected pages.
+ reprotected_pages = true;
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapInsecureMemory(KProcessAddress address, size_t size) {
+ // Get the insecure memory resource limit and pool.
+ auto* const insecure_resource_limit = KSystemControl::GetInsecureMemoryResourceLimit(m_kernel);
+ const auto insecure_pool =
+ static_cast<KMemoryManager::Pool>(KSystemControl::GetInsecureMemoryPool());
+
+ // Reserve the insecure memory.
+ // NOTE: ResultOutOfMemory is returned here instead of the usual LimitReached.
+ KScopedResourceReservation memory_reservation(insecure_resource_limit,
+ Svc::LimitableResource::PhysicalMemoryMax, size);
+ R_UNLESS(memory_reservation.Succeeded(), ResultOutOfMemory);
+
+ // Allocate pages for the insecure memory.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+ R_TRY(m_kernel.MemoryManager().AllocateAndOpen(
+ std::addressof(pg), size / PageSize,
+ KMemoryManager::EncodeOption(insecure_pool, KMemoryManager::Direction::FromFront)));
+
+ // Close the opened pages when we're done with them.
+ // If the mapping succeeds, each page will gain an extra reference, otherwise they will be freed
+ // automatically.
+ SCOPE_EXIT({ pg.Close(); });
+
+ // Clear all the newly allocated pages.
+ for (const auto& it : pg) {
+ std::memset(GetHeapVirtualPointer(m_kernel, it.GetAddress()),
+ static_cast<u32>(m_heap_fill_value), it.GetSize());
+ }
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Validate that the address's state is valid.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
+ KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Map the pages.
+ const size_t num_pages = size / PageSize;
+ const KPageProperties map_properties = {KMemoryPermission::UserReadWrite, false, false,
+ DisableMergeAttribute::DisableHead};
+ R_TRY(this->Operate(updater.GetPageList(), address, num_pages, pg, map_properties,
+ OperationType::MapGroup, false));
+
+ // Apply the memory block update.
+ m_memory_block_manager.Update(std::addressof(allocator), address, num_pages,
+ KMemoryState::Insecure, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // Update our mapped insecure size.
+ m_mapped_insecure_memory += size;
+
+ // Commit the memory reservation.
+ memory_reservation.Commit();
+
+ // We succeeded.
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnmapInsecureMemory(KProcessAddress address, size_t size) {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the memory state.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
+ KMemoryState::All, KMemoryState::Insecure, KMemoryPermission::All,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
+ KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Unmap the memory.
+ const size_t num_pages = size / PageSize;
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), address, num_pages, 0, false, unmap_properties,
+ OperationType::Unmap, false));
+
+ // Apply the memory block update.
+ m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal);
+
+ // Update our mapped insecure size.
+ m_mapped_insecure_memory -= size;
+
+ // Release the insecure memory from the insecure limit.
+ if (auto* const insecure_resource_limit =
+ KSystemControl::GetInsecureMemoryResourceLimit(m_kernel);
+ insecure_resource_limit != nullptr) {
+ insecure_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, size);
+ }
+
+ R_SUCCEED();
+}
+
+KProcessAddress KPageTableBase::FindFreeArea(KProcessAddress region_start, size_t region_num_pages,
+ size_t num_pages, size_t alignment, size_t offset,
+ size_t guard_pages) const {
+ KProcessAddress address = 0;
+
+ if (num_pages <= region_num_pages) {
+ if (this->IsAslrEnabled()) {
+ // Try to directly find a free area up to 8 times.
+ for (size_t i = 0; i < 8; i++) {
+ const size_t random_offset =
+ KSystemControl::GenerateRandomRange(
+ 0, (region_num_pages - num_pages - guard_pages) * PageSize / alignment) *
+ alignment;
+ const KProcessAddress candidate =
+ Common::AlignDown(GetInteger(region_start + random_offset), alignment) + offset;
+
+ KMemoryInfo info;
+ Svc::PageInfo page_info;
+ R_ASSERT(this->QueryInfoImpl(std::addressof(info), std::addressof(page_info),
+ candidate));
+
+ if (info.m_state != KMemoryState::Free) {
+ continue;
+ }
+ if (!(region_start <= candidate)) {
+ continue;
+ }
+ if (!(info.GetAddress() + guard_pages * PageSize <= GetInteger(candidate))) {
+ continue;
+ }
+ if (!(candidate + (num_pages + guard_pages) * PageSize - 1 <=
+ info.GetLastAddress())) {
+ continue;
+ }
+ if (!(candidate + (num_pages + guard_pages) * PageSize - 1 <=
+ region_start + region_num_pages * PageSize - 1)) {
+ continue;
+ }
+
+ address = candidate;
+ break;
+ }
+ // Fall back to finding the first free area with a random offset.
+ if (address == 0) {
+ // NOTE: Nintendo does not account for guard pages here.
+ // This may theoretically cause an offset to be chosen that cannot be mapped.
+ // We will account for guard pages.
+ const size_t offset_pages = KSystemControl::GenerateRandomRange(
+ 0, region_num_pages - num_pages - guard_pages);
+ address = m_memory_block_manager.FindFreeArea(
+ region_start + offset_pages * PageSize, region_num_pages - offset_pages,
+ num_pages, alignment, offset, guard_pages);
+ }
+ }
+ // Find the first free area.
+ if (address == 0) {
+ address = m_memory_block_manager.FindFreeArea(region_start, region_num_pages, num_pages,
+ alignment, offset, guard_pages);
+ }
+ }
+
+ return address;
+}
+
+size_t KPageTableBase::GetSize(KMemoryState state) const {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Iterate, counting blocks with the desired state.
+ size_t total_size = 0;
+ for (KMemoryBlockManager::const_iterator it =
+ m_memory_block_manager.FindIterator(m_address_space_start);
+ it != m_memory_block_manager.end(); ++it) {
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+ if (info.GetState() == state) {
+ total_size += info.GetSize();
+ }
+ }
+
+ return total_size;
+}
+
+size_t KPageTableBase::GetCodeSize() const {
+ return this->GetSize(KMemoryState::Code);
+}
+
+size_t KPageTableBase::GetCodeDataSize() const {
+ return this->GetSize(KMemoryState::CodeData);
+}
+
+size_t KPageTableBase::GetAliasCodeSize() const {
+ return this->GetSize(KMemoryState::AliasCode);
+}
+
+size_t KPageTableBase::GetAliasCodeDataSize() const {
+ return this->GetSize(KMemoryState::AliasCodeData);
+}
+
+Result KPageTableBase::AllocateAndMapPagesImpl(PageLinkedList* page_list, KProcessAddress address,
+ size_t num_pages, KMemoryPermission perm) {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ // Create a page group to hold the pages we allocate.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+
+ // Allocate the pages.
+ R_TRY(
+ m_kernel.MemoryManager().AllocateAndOpen(std::addressof(pg), num_pages, m_allocate_option));
+
+ // Ensure that the page group is closed when we're done working with it.
+ SCOPE_EXIT({ pg.Close(); });
+
+ // Clear all pages.
+ for (const auto& it : pg) {
+ std::memset(GetHeapVirtualPointer(m_kernel, it.GetAddress()),
+ static_cast<u32>(m_heap_fill_value), it.GetSize());
+ }
+
+ // Map the pages.
+ const KPageProperties properties = {perm, false, false, DisableMergeAttribute::None};
+ R_RETURN(this->Operate(page_list, address, num_pages, pg, properties, OperationType::MapGroup,
+ false));
+}
+
+Result KPageTableBase::MapPageGroupImpl(PageLinkedList* page_list, KProcessAddress address,
+ const KPageGroup& pg, const KPageProperties properties,
+ bool reuse_ll) {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ // Note the current address, so that we can iterate.
+ const KProcessAddress start_address = address;
+ KProcessAddress cur_address = address;
+
+ // Ensure that we clean up on failure.
+ ON_RESULT_FAILURE {
+ ASSERT(!reuse_ll);
+ if (cur_address != start_address) {
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_ASSERT(this->Operate(page_list, start_address,
+ (cur_address - start_address) / PageSize, 0, false,
+ unmap_properties, OperationType::Unmap, true));
+ }
+ };
+
+ // Iterate, mapping all pages in the group.
+ for (const auto& block : pg) {
+ // Map and advance.
+ const KPageProperties cur_properties =
+ (cur_address == start_address)
+ ? properties
+ : KPageProperties{properties.perm, properties.io, properties.uncached,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(page_list, cur_address, block.GetNumPages(), block.GetAddress(), true,
+ cur_properties, OperationType::Map, reuse_ll));
+ cur_address += block.GetSize();
+ }
+
+ // We succeeded!
+ R_SUCCEED();
+}
+
+void KPageTableBase::RemapPageGroup(PageLinkedList* page_list, KProcessAddress address, size_t size,
+ const KPageGroup& pg) {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ // Note the current address, so that we can iterate.
+ const KProcessAddress start_address = address;
+ const KProcessAddress last_address = start_address + size - 1;
+ const KProcessAddress end_address = last_address + 1;
+
+ // Iterate over the memory.
+ auto pg_it = pg.begin();
+ ASSERT(pg_it != pg.end());
+
+ KPhysicalAddress pg_phys_addr = pg_it->GetAddress();
+ size_t pg_pages = pg_it->GetNumPages();
+
+ auto it = m_memory_block_manager.FindIterator(start_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != m_memory_block_manager.end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // Determine the range to map.
+ KProcessAddress map_address = std::max<u64>(info.GetAddress(), GetInteger(start_address));
+ const KProcessAddress map_end_address =
+ std::min<u64>(info.GetEndAddress(), GetInteger(end_address));
+ ASSERT(map_end_address != map_address);
+
+ // Determine if we should disable head merge.
+ const bool disable_head_merge =
+ info.GetAddress() >= GetInteger(start_address) &&
+ True(info.GetDisableMergeAttribute() & KMemoryBlockDisableMergeAttribute::Normal);
+ const KPageProperties map_properties = {
+ info.GetPermission(), false, false,
+ disable_head_merge ? DisableMergeAttribute::DisableHead : DisableMergeAttribute::None};
+
+ // While we have pages to map, map them.
+ size_t map_pages = (map_end_address - map_address) / PageSize;
+ while (map_pages > 0) {
+ // Check if we're at the end of the physical block.
+ if (pg_pages == 0) {
+ // Ensure there are more pages to map.
+ ASSERT(pg_it != pg.end());
+
+ // Advance our physical block.
+ ++pg_it;
+ pg_phys_addr = pg_it->GetAddress();
+ pg_pages = pg_it->GetNumPages();
+ }
+
+ // Map whatever we can.
+ const size_t cur_pages = std::min(pg_pages, map_pages);
+ R_ASSERT(this->Operate(page_list, map_address, map_pages, pg_phys_addr, true,
+ map_properties, OperationType::Map, true));
+
+ // Advance.
+ map_address += cur_pages * PageSize;
+ map_pages -= cur_pages;
+
+ pg_phys_addr += cur_pages * PageSize;
+ pg_pages -= cur_pages;
+ }
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ ++it;
+ }
+
+ // Check that we re-mapped precisely the page group.
+ ASSERT((++pg_it) == pg.end());
+}
+
+Result KPageTableBase::MakePageGroup(KPageGroup& pg, KProcessAddress addr, size_t num_pages) {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ const size_t size = num_pages * PageSize;
+
+ // We're making a new group, not adding to an existing one.
+ R_UNLESS(pg.empty(), ResultInvalidCurrentMemory);
+
+ auto& impl = this->GetImpl();
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ R_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), addr),
+ ResultInvalidCurrentMemory);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ // Iterate, adding to group as we go.
+ while (tot_size < size) {
+ R_UNLESS(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)),
+ ResultInvalidCurrentMemory);
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ const size_t cur_pages = cur_size / PageSize;
+
+ R_UNLESS(IsHeapPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+ R_TRY(pg.AddBlock(cur_addr, cur_pages));
+
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we add the right amount for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ // add the last block.
+ const size_t cur_pages = cur_size / PageSize;
+ R_UNLESS(IsHeapPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+ R_TRY(pg.AddBlock(cur_addr, cur_pages));
+
+ R_SUCCEED();
+}
+
+bool KPageTableBase::IsValidPageGroup(const KPageGroup& pg, KProcessAddress addr,
+ size_t num_pages) {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ const size_t size = num_pages * PageSize;
+
+ // Empty groups are necessarily invalid.
+ if (pg.empty()) {
+ return false;
+ }
+
+ auto& impl = this->GetImpl();
+
+ // We're going to validate that the group we'd expect is the group we see.
+ auto cur_it = pg.begin();
+ KPhysicalAddress cur_block_address = cur_it->GetAddress();
+ size_t cur_block_pages = cur_it->GetNumPages();
+
+ auto UpdateCurrentIterator = [&]() {
+ if (cur_block_pages == 0) {
+ if ((++cur_it) == pg.end()) {
+ return false;
+ }
+
+ cur_block_address = cur_it->GetAddress();
+ cur_block_pages = cur_it->GetNumPages();
+ }
+ return true;
+ };
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ if (!impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), addr)) {
+ return false;
+ }
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ // Iterate, comparing expected to actual.
+ while (tot_size < size) {
+ if (!impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context))) {
+ return false;
+ }
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ const size_t cur_pages = cur_size / PageSize;
+
+ if (!IsHeapPhysicalAddress(cur_addr)) {
+ return false;
+ }
+
+ if (!UpdateCurrentIterator()) {
+ return false;
+ }
+
+ if (cur_block_address != cur_addr || cur_block_pages < cur_pages) {
+ return false;
+ }
+
+ cur_block_address += cur_size;
+ cur_block_pages -= cur_pages;
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we compare the right amount for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ if (!IsHeapPhysicalAddress(cur_addr)) {
+ return false;
+ }
+
+ if (!UpdateCurrentIterator()) {
+ return false;
+ }
+
+ return cur_block_address == cur_addr && cur_block_pages == (cur_size / PageSize);
+}
+
+Result KPageTableBase::GetContiguousMemoryRangeWithState(
+ MemoryRange* out, KProcessAddress address, size_t size, KMemoryState state_mask,
+ KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm,
+ KMemoryAttribute attr_mask, KMemoryAttribute attr) {
+ ASSERT(this->IsLockedByCurrentThread());
+
+ auto& impl = this->GetImpl();
+
+ // Begin a traversal.
+ TraversalContext context;
+ TraversalEntry cur_entry = {.phys_addr = 0, .block_size = 0};
+ R_UNLESS(impl.BeginTraversal(std::addressof(cur_entry), std::addressof(context), address),
+ ResultInvalidCurrentMemory);
+
+ // Traverse until we have enough size or we aren't contiguous any more.
+ const KPhysicalAddress phys_address = cur_entry.phys_addr;
+ size_t contig_size;
+ for (contig_size =
+ cur_entry.block_size - (GetInteger(phys_address) & (cur_entry.block_size - 1));
+ contig_size < size; contig_size += cur_entry.block_size) {
+ if (!impl.ContinueTraversal(std::addressof(cur_entry), std::addressof(context))) {
+ break;
+ }
+ if (cur_entry.phys_addr != phys_address + contig_size) {
+ break;
+ }
+ }
+
+ // Take the minimum size for our region.
+ size = std::min(size, contig_size);
+
+ // Check that the memory is contiguous (modulo the reference count bit).
+ const KMemoryState test_state_mask = state_mask | KMemoryState::FlagReferenceCounted;
+ const bool is_heap = R_SUCCEEDED(this->CheckMemoryStateContiguous(
+ address, size, test_state_mask, state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
+ attr_mask, attr));
+ if (!is_heap) {
+ R_TRY(this->CheckMemoryStateContiguous(address, size, test_state_mask, state, perm_mask,
+ perm, attr_mask, attr));
+ }
+
+ // The memory is contiguous, so set the output range.
+ out->Set(phys_address, size, is_heap);
+ R_SUCCEED();
+}
+
+Result KPageTableBase::SetMemoryPermission(KProcessAddress addr, size_t size,
+ Svc::MemoryPermission svc_perm) {
+ const size_t num_pages = size / PageSize;
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Verify we can change the memory permission.
+ KMemoryState old_state;
+ KMemoryPermission old_perm;
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr,
+ std::addressof(num_allocator_blocks), addr, size,
+ KMemoryState::FlagCanReprotect, KMemoryState::FlagCanReprotect,
+ KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::All, KMemoryAttribute::None));
+
+ // Determine new perm.
+ const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm);
+ R_SUCCEED_IF(old_perm == new_perm);
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform mapping operation.
+ const KPageProperties properties = {new_perm, false, false, DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties,
+ OperationType::ChangePermissions, false));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::SetProcessMemoryPermission(KProcessAddress addr, size_t size,
+ Svc::MemoryPermission svc_perm) {
+ const size_t num_pages = size / PageSize;
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Verify we can change the memory permission.
+ KMemoryState old_state;
+ KMemoryPermission old_perm;
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr,
+ std::addressof(num_allocator_blocks), addr, size,
+ KMemoryState::FlagCode, KMemoryState::FlagCode,
+ KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::All, KMemoryAttribute::None));
+
+ // Make a new page group for the region.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+
+ // Determine new perm/state.
+ const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm);
+ KMemoryState new_state = old_state;
+ const bool is_w = (new_perm & KMemoryPermission::UserWrite) == KMemoryPermission::UserWrite;
+ const bool is_x = (new_perm & KMemoryPermission::UserExecute) == KMemoryPermission::UserExecute;
+ const bool was_x =
+ (old_perm & KMemoryPermission::UserExecute) == KMemoryPermission::UserExecute;
+ ASSERT(!(is_w && is_x));
+
+ if (is_w) {
+ switch (old_state) {
+ case KMemoryState::Code:
+ new_state = KMemoryState::CodeData;
+ break;
+ case KMemoryState::AliasCode:
+ new_state = KMemoryState::AliasCodeData;
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+
+ // Create a page group, if we're setting execute permissions.
+ if (is_x) {
+ R_TRY(this->MakePageGroup(pg, GetInteger(addr), num_pages));
+ }
+
+ // Succeed if there's nothing to do.
+ R_SUCCEED_IF(old_perm == new_perm && old_state == new_state);
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform mapping operation.
+ const KPageProperties properties = {new_perm, false, false, DisableMergeAttribute::None};
+ const auto operation = was_x ? OperationType::ChangePermissionsAndRefreshAndFlush
+ : OperationType::ChangePermissions;
+ R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties, operation,
+ false));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, new_state, new_perm,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // Ensure cache coherency, if we're setting pages as executable.
+ if (is_x) {
+ for (const auto& block : pg) {
+ StoreDataCache(GetHeapVirtualPointer(m_kernel, block.GetAddress()), block.GetSize());
+ }
+ InvalidateInstructionCache(m_system, addr, size);
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::SetMemoryAttribute(KProcessAddress addr, size_t size, KMemoryAttribute mask,
+ KMemoryAttribute attr) {
+ const size_t num_pages = size / PageSize;
+ ASSERT((mask | KMemoryAttribute::SetMask) == KMemoryAttribute::SetMask);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Verify we can change the memory attribute.
+ KMemoryState old_state;
+ KMemoryPermission old_perm;
+ KMemoryAttribute old_attr;
+ size_t num_allocator_blocks;
+ constexpr KMemoryAttribute AttributeTestMask =
+ ~(KMemoryAttribute::SetMask | KMemoryAttribute::DeviceShared);
+ const KMemoryState state_test_mask =
+ (True(mask & KMemoryAttribute::Uncached) ? KMemoryState::FlagCanChangeAttribute
+ : KMemoryState::None) |
+ (True(mask & KMemoryAttribute::PermissionLocked) ? KMemoryState::FlagCanPermissionLock
+ : KMemoryState::None);
+ R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm),
+ std::addressof(old_attr), std::addressof(num_allocator_blocks),
+ addr, size, state_test_mask, state_test_mask,
+ KMemoryPermission::None, KMemoryPermission::None,
+ AttributeTestMask, KMemoryAttribute::None, ~AttributeTestMask));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // If we need to, perform a change attribute operation.
+ if (True(mask & KMemoryAttribute::Uncached)) {
+ // Determine the new attribute.
+ const KMemoryAttribute new_attr =
+ static_cast<KMemoryAttribute>(((old_attr & ~mask) | (attr & mask)));
+
+ // Perform operation.
+ const KPageProperties properties = {old_perm, false,
+ True(new_attr & KMemoryAttribute::Uncached),
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, 0, false, properties,
+ OperationType::ChangePermissionsAndRefreshAndFlush, false));
+ }
+
+ // Update the blocks.
+ m_memory_block_manager.UpdateAttribute(std::addressof(allocator), addr, num_pages, mask, attr);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::SetHeapSize(KProcessAddress* out, size_t size) {
+ // Lock the physical memory mutex.
+ KScopedLightLock map_phys_mem_lk(m_map_physical_memory_lock);
+
+ // Try to perform a reduction in heap, instead of an extension.
+ KProcessAddress cur_address;
+ size_t allocation_size;
+ {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Validate that setting heap size is possible at all.
+ R_UNLESS(!m_is_kernel, ResultOutOfMemory);
+ R_UNLESS(size <= static_cast<size_t>(m_heap_region_end - m_heap_region_start),
+ ResultOutOfMemory);
+ R_UNLESS(size <= m_max_heap_size, ResultOutOfMemory);
+
+ if (size < static_cast<size_t>(m_current_heap_end - m_heap_region_start)) {
+ // The size being requested is less than the current size, so we need to free the end of
+ // the heap.
+
+ // Validate memory state.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(
+ std::addressof(num_allocator_blocks), m_heap_region_start + size,
+ (m_current_heap_end - m_heap_region_start) - size, KMemoryState::All,
+ KMemoryState::Normal, KMemoryPermission::All, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::All, KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager,
+ num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Unmap the end of the heap.
+ const size_t num_pages = ((m_current_heap_end - m_heap_region_start) - size) / PageSize;
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), m_heap_region_start + size, num_pages, 0,
+ false, unmap_properties, OperationType::Unmap, false));
+
+ // Release the memory from the resource limit.
+ m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
+ num_pages * PageSize);
+
+ // Apply the memory block update.
+ m_memory_block_manager.Update(std::addressof(allocator), m_heap_region_start + size,
+ num_pages, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None,
+ size == 0 ? KMemoryBlockDisableMergeAttribute::Normal
+ : KMemoryBlockDisableMergeAttribute::None);
+
+ // Update the current heap end.
+ m_current_heap_end = m_heap_region_start + size;
+
+ // Set the output.
+ *out = m_heap_region_start;
+ R_SUCCEED();
+ } else if (size == static_cast<size_t>(m_current_heap_end - m_heap_region_start)) {
+ // The size requested is exactly the current size.
+ *out = m_heap_region_start;
+ R_SUCCEED();
+ } else {
+ // We have to allocate memory. Determine how much to allocate and where while the table
+ // is locked.
+ cur_address = m_current_heap_end;
+ allocation_size = size - (m_current_heap_end - m_heap_region_start);
+ }
+ }
+
+ // Reserve memory for the heap extension.
+ KScopedResourceReservation memory_reservation(
+ m_resource_limit, Svc::LimitableResource::PhysicalMemoryMax, allocation_size);
+ R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
+
+ // Allocate pages for the heap extension.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+ R_TRY(m_kernel.MemoryManager().AllocateAndOpen(std::addressof(pg), allocation_size / PageSize,
+ m_allocate_option));
+
+ // Close the opened pages when we're done with them.
+ // If the mapping succeeds, each page will gain an extra reference, otherwise they will be freed
+ // automatically.
+ SCOPE_EXIT({ pg.Close(); });
+
+ // Clear all the newly allocated pages.
+ for (const auto& it : pg) {
+ std::memset(GetHeapVirtualPointer(m_kernel, it.GetAddress()), m_heap_fill_value,
+ it.GetSize());
+ }
+
+ // Map the pages.
+ {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Ensure that the heap hasn't changed since we began executing.
+ ASSERT(cur_address == m_current_heap_end);
+
+ // Check the memory state.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), m_current_heap_end,
+ allocation_size, KMemoryState::All, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::None, KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(
+ std::addressof(allocator_result), m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Map the pages.
+ const size_t num_pages = allocation_size / PageSize;
+ const KPageProperties map_properties = {KMemoryPermission::UserReadWrite, false, false,
+ (m_current_heap_end == m_heap_region_start)
+ ? DisableMergeAttribute::DisableHead
+ : DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), m_current_heap_end, num_pages, pg,
+ map_properties, OperationType::MapGroup, false));
+
+ // We succeeded, so commit our memory reservation.
+ memory_reservation.Commit();
+
+ // Apply the memory block update.
+ m_memory_block_manager.Update(
+ std::addressof(allocator), m_current_heap_end, num_pages, KMemoryState::Normal,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
+ m_heap_region_start == m_current_heap_end ? KMemoryBlockDisableMergeAttribute::Normal
+ : KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // Update the current heap end.
+ m_current_heap_end = m_heap_region_start + size;
+
+ // Set the output.
+ *out = m_heap_region_start;
+ R_SUCCEED();
+ }
+}
+
+Result KPageTableBase::SetMaxHeapSize(size_t size) {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Only process page tables are allowed to set heap size.
+ ASSERT(!this->IsKernel());
+
+ m_max_heap_size = size;
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::QueryInfo(KMemoryInfo* out_info, Svc::PageInfo* out_page_info,
+ KProcessAddress addr) const {
+ // If the address is invalid, create a fake block.
+ if (!this->Contains(addr, 1)) {
+ *out_info = {
+ .m_address = GetInteger(m_address_space_end),
+ .m_size = 0 - GetInteger(m_address_space_end),
+ .m_state = static_cast<KMemoryState>(Svc::MemoryState::Inaccessible),
+ .m_device_disable_merge_left_count = 0,
+ .m_device_disable_merge_right_count = 0,
+ .m_ipc_lock_count = 0,
+ .m_device_use_count = 0,
+ .m_ipc_disable_merge_count = 0,
+ .m_permission = KMemoryPermission::None,
+ .m_attribute = KMemoryAttribute::None,
+ .m_original_permission = KMemoryPermission::None,
+ .m_disable_merge_attribute = KMemoryBlockDisableMergeAttribute::None,
+ };
+ out_page_info->flags = 0;
+
+ R_SUCCEED();
+ }
+
+ // Otherwise, lock the table and query.
+ KScopedLightLock lk(m_general_lock);
+ R_RETURN(this->QueryInfoImpl(out_info, out_page_info, addr));
+}
+
+Result KPageTableBase::QueryPhysicalAddress(Svc::lp64::PhysicalMemoryInfo* out,
+ KProcessAddress address) const {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Align the address down to page size.
+ address = Common::AlignDown(GetInteger(address), PageSize);
+
+ // Verify that we can query the address.
+ KMemoryInfo info;
+ Svc::PageInfo page_info;
+ R_TRY(this->QueryInfoImpl(std::addressof(info), std::addressof(page_info), address));
+
+ // Check the memory state.
+ R_TRY(this->CheckMemoryState(info, KMemoryState::FlagCanQueryPhysical,
+ KMemoryState::FlagCanQueryPhysical,
+ KMemoryPermission::UserReadExecute, KMemoryPermission::UserRead,
+ KMemoryAttribute::None, KMemoryAttribute::None));
+
+ // Prepare to traverse.
+ KPhysicalAddress phys_addr;
+ size_t phys_size;
+
+ KProcessAddress virt_addr = info.GetAddress();
+ KProcessAddress end_addr = info.GetEndAddress();
+
+ // Perform traversal.
+ {
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid =
+ m_impl->BeginTraversal(std::addressof(next_entry), std::addressof(context), virt_addr);
+ R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
+
+ // Set tracking variables.
+ phys_addr = next_entry.phys_addr;
+ phys_size = next_entry.block_size - (GetInteger(phys_addr) & (next_entry.block_size - 1));
+
+ // Iterate.
+ while (true) {
+ // Continue the traversal.
+ traverse_valid =
+ m_impl->ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ if (!traverse_valid) {
+ break;
+ }
+
+ if (next_entry.phys_addr != (phys_addr + phys_size)) {
+ // Check if we're done.
+ if (virt_addr <= address && address <= virt_addr + phys_size - 1) {
+ break;
+ }
+
+ // Advance.
+ phys_addr = next_entry.phys_addr;
+ virt_addr += next_entry.block_size;
+ phys_size =
+ next_entry.block_size - (GetInteger(phys_addr) & (next_entry.block_size - 1));
+ } else {
+ phys_size += next_entry.block_size;
+ }
+
+ // Check if we're done.
+ if (end_addr < virt_addr + phys_size) {
+ break;
+ }
+ }
+ ASSERT(virt_addr <= address && address <= virt_addr + phys_size - 1);
+
+ // Ensure we use the right size.
+ if (end_addr < virt_addr + phys_size) {
+ phys_size = end_addr - virt_addr;
+ }
+ }
+
+ // Set the output.
+ out->physical_address = GetInteger(phys_addr);
+ out->virtual_address = GetInteger(virt_addr);
+ out->size = phys_size;
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapIoImpl(KProcessAddress* out, PageLinkedList* page_list,
+ KPhysicalAddress phys_addr, size_t size, KMemoryState state,
+ KMemoryPermission perm) {
+ // Check pre-conditions.
+ ASSERT(this->IsLockedByCurrentThread());
+ ASSERT(Common::IsAligned(GetInteger(phys_addr), PageSize));
+ ASSERT(Common::IsAligned(size, PageSize));
+ ASSERT(size > 0);
+
+ R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
+ const size_t num_pages = size / PageSize;
+ const KPhysicalAddress last = phys_addr + size - 1;
+
+ // Get region extents.
+ const KProcessAddress region_start = m_kernel_map_region_start;
+ const size_t region_size = m_kernel_map_region_end - m_kernel_map_region_start;
+ const size_t region_num_pages = region_size / PageSize;
+
+ ASSERT(this->CanContain(region_start, region_size, state));
+
+ // Locate the memory region.
+ const KMemoryRegion* region = KMemoryLayout::Find(m_kernel.MemoryLayout(), phys_addr);
+ R_UNLESS(region != nullptr, ResultInvalidAddress);
+
+ ASSERT(region->Contains(GetInteger(phys_addr)));
+
+ // Ensure that the region is mappable.
+ const bool is_rw = perm == KMemoryPermission::UserReadWrite;
+ while (true) {
+ // Check that the region exists.
+ R_UNLESS(region != nullptr, ResultInvalidAddress);
+
+ // Check the region attributes.
+ R_UNLESS(!region->IsDerivedFrom(KMemoryRegionType_Dram), ResultInvalidAddress);
+ R_UNLESS(!region->HasTypeAttribute(KMemoryRegionAttr_UserReadOnly) || !is_rw,
+ ResultInvalidAddress);
+ R_UNLESS(!region->HasTypeAttribute(KMemoryRegionAttr_NoUserMap), ResultInvalidAddress);
+
+ // Check if we're done.
+ if (GetInteger(last) <= region->GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ region = region->GetNext();
+ };
+
+ // Select an address to map at.
+ KProcessAddress addr = 0;
+ {
+ const size_t alignment = 4_KiB;
+ const KPhysicalAddress aligned_phys =
+ Common::AlignUp(GetInteger(phys_addr), alignment) + alignment - 1;
+ R_UNLESS(aligned_phys > phys_addr, ResultInvalidAddress);
+
+ const KPhysicalAddress last_aligned_paddr =
+ Common::AlignDown(GetInteger(last) + 1, alignment) - 1;
+ R_UNLESS((last_aligned_paddr <= last && aligned_phys <= last_aligned_paddr),
+ ResultInvalidAddress);
+
+ addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0,
+ this->GetNumGuardPages());
+ R_UNLESS(addr != 0, ResultOutOfMemory);
+ }
+
+ // Check that we can map IO here.
+ ASSERT(this->CanContain(addr, size, state));
+ R_ASSERT(this->CheckMemoryState(addr, size, KMemoryState::All, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::None, KMemoryAttribute::None));
+
+ // Perform mapping operation.
+ const KPageProperties properties = {perm, state == KMemoryState::IoRegister, false,
+ DisableMergeAttribute::DisableHead};
+ R_TRY(this->Operate(page_list, addr, num_pages, phys_addr, true, properties, OperationType::Map,
+ false));
+
+ // Set the output address.
+ *out = addr;
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapIo(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Map the io memory.
+ KProcessAddress addr;
+ R_TRY(this->MapIoImpl(std::addressof(addr), updater.GetPageList(), phys_addr, size,
+ KMemoryState::IoRegister, perm));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, size / PageSize,
+ KMemoryState::IoRegister, perm, KMemoryAttribute::Locked,
+ KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // We successfully mapped the pages.
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapIoRegion(KProcessAddress dst_address, KPhysicalAddress phys_addr,
+ size_t size, Svc::MemoryMapping mapping,
+ Svc::MemoryPermission svc_perm) {
+ const size_t num_pages = size / PageSize;
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Validate the memory state.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), dst_address, size,
+ KMemoryState::All, KMemoryState::None, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform mapping operation.
+ const KMemoryPermission perm = ConvertToKMemoryPermission(svc_perm);
+ const KPageProperties properties = {perm, mapping == Svc::MemoryMapping::IoRegister,
+ mapping == Svc::MemoryMapping::Uncached,
+ DisableMergeAttribute::DisableHead};
+ R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, phys_addr, true, properties,
+ OperationType::Map, false));
+
+ // Update the blocks.
+ const auto state =
+ mapping == Svc::MemoryMapping::Memory ? KMemoryState::IoMemory : KMemoryState::IoRegister;
+ m_memory_block_manager.Update(
+ std::addressof(allocator), dst_address, num_pages, state, perm, KMemoryAttribute::Locked,
+ KMemoryBlockDisableMergeAttribute::Normal, KMemoryBlockDisableMergeAttribute::None);
+
+ // We successfully mapped the pages.
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnmapIoRegion(KProcessAddress dst_address, KPhysicalAddress phys_addr,
+ size_t size, Svc::MemoryMapping mapping) {
+ const size_t num_pages = size / PageSize;
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Validate the memory state.
+ KMemoryState old_state;
+ KMemoryPermission old_perm;
+ KMemoryAttribute old_attr;
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(
+ std::addressof(old_state), std::addressof(old_perm), std::addressof(old_attr),
+ std::addressof(num_allocator_blocks), dst_address, size, KMemoryState::All,
+ mapping == Svc::MemoryMapping::Memory ? KMemoryState::IoMemory : KMemoryState::IoRegister,
+ KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::Locked));
+
+ // Validate that the region being unmapped corresponds to the physical range described.
+ {
+ // Get the impl.
+ auto& impl = this->GetImpl();
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ ASSERT(
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_address));
+
+ // Check that the physical region matches.
+ R_UNLESS(next_entry.phys_addr == phys_addr, ResultInvalidMemoryRegion);
+
+ // Iterate.
+ for (size_t checked_size =
+ next_entry.block_size - (GetInteger(phys_addr) & (next_entry.block_size - 1));
+ checked_size < size; checked_size += next_entry.block_size) {
+ // Continue the traversal.
+ ASSERT(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)));
+
+ // Check that the physical region matches.
+ R_UNLESS(next_entry.phys_addr == phys_addr + checked_size, ResultInvalidMemoryRegion);
+ }
+ }
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // If the region being unmapped is Memory, synchronize.
+ if (mapping == Svc::MemoryMapping::Memory) {
+ // Change the region to be uncached.
+ const KPageProperties properties = {old_perm, false, true, DisableMergeAttribute::None};
+ R_ASSERT(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false, properties,
+ OperationType::ChangePermissionsAndRefresh, false));
+
+ // Temporarily unlock ourselves, so that other operations can occur while we flush the
+ // region.
+ m_general_lock.Unlock();
+ SCOPE_EXIT({ m_general_lock.Lock(); });
+
+ // Flush the region.
+ R_ASSERT(FlushDataCache(dst_address, size));
+ }
+
+ // Perform the unmap.
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_ASSERT(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false,
+ unmap_properties, OperationType::Unmap, false));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), dst_address, num_pages,
+ KMemoryState::Free, KMemoryPermission::None,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapStatic(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
+ ASSERT(Common::IsAligned(GetInteger(phys_addr), PageSize));
+ ASSERT(Common::IsAligned(size, PageSize));
+ ASSERT(size > 0);
+ R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
+ const size_t num_pages = size / PageSize;
+ const KPhysicalAddress last = phys_addr + size - 1;
+
+ // Get region extents.
+ const KProcessAddress region_start = this->GetRegionAddress(KMemoryState::Static);
+ const size_t region_size = this->GetRegionSize(KMemoryState::Static);
+ const size_t region_num_pages = region_size / PageSize;
+
+ // Locate the memory region.
+ const KMemoryRegion* region = KMemoryLayout::Find(m_kernel.MemoryLayout(), phys_addr);
+ R_UNLESS(region != nullptr, ResultInvalidAddress);
+
+ ASSERT(region->Contains(GetInteger(phys_addr)));
+ R_UNLESS(GetInteger(last) <= region->GetLastAddress(), ResultInvalidAddress);
+
+ // Check the region attributes.
+ const bool is_rw = perm == KMemoryPermission::UserReadWrite;
+ R_UNLESS(region->IsDerivedFrom(KMemoryRegionType_Dram), ResultInvalidAddress);
+ R_UNLESS(!region->HasTypeAttribute(KMemoryRegionAttr_NoUserMap), ResultInvalidAddress);
+ R_UNLESS(!region->HasTypeAttribute(KMemoryRegionAttr_UserReadOnly) || !is_rw,
+ ResultInvalidAddress);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Select an address to map at.
+ KProcessAddress addr = 0;
+ {
+ const size_t alignment = 4_KiB;
+ const KPhysicalAddress aligned_phys =
+ Common::AlignUp(GetInteger(phys_addr), alignment) + alignment - 1;
+ R_UNLESS(aligned_phys > phys_addr, ResultInvalidAddress);
+
+ const KPhysicalAddress last_aligned_paddr =
+ Common::AlignDown(GetInteger(last) + 1, alignment) - 1;
+ R_UNLESS((last_aligned_paddr <= last && aligned_phys <= last_aligned_paddr),
+ ResultInvalidAddress);
+
+ addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0,
+ this->GetNumGuardPages());
+ R_UNLESS(addr != 0, ResultOutOfMemory);
+ }
+
+ // Check that we can map static here.
+ ASSERT(this->CanContain(addr, size, KMemoryState::Static));
+ R_ASSERT(this->CheckMemoryState(addr, size, KMemoryState::All, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::None, KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform mapping operation.
+ const KPageProperties properties = {perm, false, false, DisableMergeAttribute::DisableHead};
+ R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, phys_addr, true, properties,
+ OperationType::Map, false));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, KMemoryState::Static,
+ perm, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // We successfully mapped the pages.
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapRegion(KMemoryRegionType region_type, KMemoryPermission perm) {
+ // Get the memory region.
+ const KMemoryRegion* region =
+ m_kernel.MemoryLayout().GetPhysicalMemoryRegionTree().FindFirstDerived(region_type);
+ R_UNLESS(region != nullptr, ResultOutOfRange);
+
+ // Check that the region is valid.
+ ASSERT(region->GetEndAddress() != 0);
+
+ // Map the region.
+ R_TRY_CATCH(this->MapStatic(region->GetAddress(), region->GetSize(), perm)){
+ R_CONVERT(ResultInvalidAddress, ResultOutOfRange)} R_END_TRY_CATCH;
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
+ KPhysicalAddress phys_addr, bool is_pa_valid,
+ KProcessAddress region_start, size_t region_num_pages,
+ KMemoryState state, KMemoryPermission perm) {
+ ASSERT(Common::IsAligned(alignment, PageSize) && alignment >= PageSize);
+
+ // Ensure this is a valid map request.
+ R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state),
+ ResultInvalidCurrentMemory);
+ R_UNLESS(num_pages < region_num_pages, ResultOutOfMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Find a random address to map at.
+ KProcessAddress addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment,
+ 0, this->GetNumGuardPages());
+ R_UNLESS(addr != 0, ResultOutOfMemory);
+ ASSERT(Common::IsAligned(GetInteger(addr), alignment));
+ ASSERT(this->CanContain(addr, num_pages * PageSize, state));
+ R_ASSERT(this->CheckMemoryState(
+ addr, num_pages * PageSize, KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None, KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform mapping operation.
+ if (is_pa_valid) {
+ const KPageProperties properties = {perm, false, false, DisableMergeAttribute::DisableHead};
+ R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, phys_addr, true, properties,
+ OperationType::Map, false));
+ } else {
+ R_TRY(this->AllocateAndMapPagesImpl(updater.GetPageList(), addr, num_pages, perm));
+ }
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, state, perm,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // We successfully mapped the pages.
+ *out_addr = addr;
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapPages(KProcessAddress address, size_t num_pages, KMemoryState state,
+ KMemoryPermission perm) {
+ // Check that the map is in range.
+ const size_t size = num_pages * PageSize;
+ R_UNLESS(this->CanContain(address, size, state), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the memory state.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
+ KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Map the pages.
+ R_TRY(this->AllocateAndMapPagesImpl(updater.GetPageList(), address, num_pages, perm));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, state, perm,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnmapPages(KProcessAddress address, size_t num_pages, KMemoryState state) {
+ // Check that the unmap is in range.
+ const size_t size = num_pages * PageSize;
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the memory state.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
+ KMemoryState::All, state, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform the unmap.
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), address, num_pages, 0, false, unmap_properties,
+ OperationType::Unmap, false));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapPageGroup(KProcessAddress* out_addr, const KPageGroup& pg,
+ KProcessAddress region_start, size_t region_num_pages,
+ KMemoryState state, KMemoryPermission perm) {
+ ASSERT(!this->IsLockedByCurrentThread());
+
+ // Ensure this is a valid map request.
+ const size_t num_pages = pg.GetNumPages();
+ R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state),
+ ResultInvalidCurrentMemory);
+ R_UNLESS(num_pages < region_num_pages, ResultOutOfMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Find a random address to map at.
+ KProcessAddress addr = this->FindFreeArea(region_start, region_num_pages, num_pages, PageSize,
+ 0, this->GetNumGuardPages());
+ R_UNLESS(addr != 0, ResultOutOfMemory);
+ ASSERT(this->CanContain(addr, num_pages * PageSize, state));
+ R_ASSERT(this->CheckMemoryState(
+ addr, num_pages * PageSize, KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None, KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform mapping operation.
+ const KPageProperties properties = {perm, false, false, DisableMergeAttribute::DisableHead};
+ R_TRY(this->MapPageGroupImpl(updater.GetPageList(), addr, pg, properties, false));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, state, perm,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // We successfully mapped the pages.
+ *out_addr = addr;
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapPageGroup(KProcessAddress addr, const KPageGroup& pg, KMemoryState state,
+ KMemoryPermission perm) {
+ ASSERT(!this->IsLockedByCurrentThread());
+
+ // Ensure this is a valid map request.
+ const size_t num_pages = pg.GetNumPages();
+ const size_t size = num_pages * PageSize;
+ R_UNLESS(this->CanContain(addr, size, state), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check if state allows us to map.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), addr, size,
+ KMemoryState::All, KMemoryState::Free, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform mapping operation.
+ const KPageProperties properties = {perm, false, false, DisableMergeAttribute::DisableHead};
+ R_TRY(this->MapPageGroupImpl(updater.GetPageList(), addr, pg, properties, false));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), addr, num_pages, state, perm,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // We successfully mapped the pages.
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnmapPageGroup(KProcessAddress address, const KPageGroup& pg,
+ KMemoryState state) {
+ ASSERT(!this->IsLockedByCurrentThread());
+
+ // Ensure this is a valid unmap request.
+ const size_t num_pages = pg.GetNumPages();
+ const size_t size = num_pages * PageSize;
+ R_UNLESS(this->CanContain(address, size, state), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check if state allows us to unmap.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
+ KMemoryState::All, state, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::None));
+
+ // Check that the page group is valid.
+ R_UNLESS(this->IsValidPageGroup(pg, address, num_pages), ResultInvalidCurrentMemory);
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Perform unmapping operation.
+ const KPageProperties properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), address, num_pages, 0, false, properties,
+ OperationType::Unmap, false));
+
+ // Update the blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), address, num_pages, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MakeAndOpenPageGroup(KPageGroup* out, KProcessAddress address,
+ size_t num_pages, KMemoryState state_mask,
+ KMemoryState state, KMemoryPermission perm_mask,
+ KMemoryPermission perm, KMemoryAttribute attr_mask,
+ KMemoryAttribute attr) {
+ // Ensure that the page group isn't null.
+ ASSERT(out != nullptr);
+
+ // Make sure that the region we're mapping is valid for the table.
+ const size_t size = num_pages * PageSize;
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check if state allows us to create the group.
+ R_TRY(this->CheckMemoryState(address, size, state_mask | KMemoryState::FlagReferenceCounted,
+ state | KMemoryState::FlagReferenceCounted, perm_mask, perm,
+ attr_mask, attr));
+
+ // Create a new page group for the region.
+ R_TRY(this->MakePageGroup(*out, address, num_pages));
+
+ // Open a new reference to the pages in the group.
+ out->Open();
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::InvalidateProcessDataCache(KProcessAddress address, size_t size) {
+ // Check that the region is in range.
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the memory state.
+ R_TRY(this->CheckMemoryStateContiguous(
+ address, size, KMemoryState::FlagReferenceCounted, KMemoryState::FlagReferenceCounted,
+ KMemoryPermission::UserReadWrite, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::Uncached, KMemoryAttribute::None));
+
+ // Get the impl.
+ auto& impl = this->GetImpl();
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid =
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), address);
+ R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ // Iterate.
+ while (tot_size < size) {
+ // Continue the traversal.
+ traverse_valid =
+ impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ // Check that the pages are linearly mapped.
+ R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+
+ // Invalidate the block.
+ if (cur_size > 0) {
+ // NOTE: Nintendo does not check the result of invalidation.
+ InvalidateDataCache(GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size);
+ }
+
+ // Advance.
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we use the right size for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ // Check that the last block is linearly mapped.
+ R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+
+ // Invalidate the last block.
+ if (cur_size > 0) {
+ // NOTE: Nintendo does not check the result of invalidation.
+ InvalidateDataCache(GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size);
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::InvalidateCurrentProcessDataCache(KProcessAddress address, size_t size) {
+ // Check pre-condition: this is being called on the current process.
+ ASSERT(this == std::addressof(GetCurrentProcess(m_kernel).GetPageTable().GetBasePageTable()));
+
+ // Check that the region is in range.
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the memory state.
+ R_TRY(this->CheckMemoryStateContiguous(
+ address, size, KMemoryState::FlagReferenceCounted, KMemoryState::FlagReferenceCounted,
+ KMemoryPermission::UserReadWrite, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::Uncached, KMemoryAttribute::None));
+
+ // Invalidate the data cache.
+ R_RETURN(InvalidateDataCache(address, size));
+}
+
+Result KPageTableBase::ReadDebugMemory(KProcessAddress dst_address, KProcessAddress src_address,
+ size_t size) {
+ // Lightly validate the region is in range.
+ R_UNLESS(this->Contains(src_address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Require that the memory either be user readable or debuggable.
+ const bool can_read = R_SUCCEEDED(this->CheckMemoryStateContiguous(
+ src_address, size, KMemoryState::None, KMemoryState::None, KMemoryPermission::UserRead,
+ KMemoryPermission::UserRead, KMemoryAttribute::None, KMemoryAttribute::None));
+ if (!can_read) {
+ const bool can_debug = R_SUCCEEDED(this->CheckMemoryStateContiguous(
+ src_address, size, KMemoryState::FlagCanDebug, KMemoryState::FlagCanDebug,
+ KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+ R_UNLESS(can_debug, ResultInvalidCurrentMemory);
+ }
+
+ // Get the impl.
+ auto& impl = this->GetImpl();
+ auto& dst_memory = GetCurrentMemory(m_system.Kernel());
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid =
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), src_address);
+ R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ auto PerformCopy = [&]() -> Result {
+ // Ensure the address is linear mapped.
+ R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+
+ // Copy as much aligned data as we can.
+ if (cur_size >= sizeof(u32)) {
+ const size_t copy_size = Common::AlignDown(cur_size, sizeof(u32));
+ const void* copy_src = GetLinearMappedVirtualPointer(m_kernel, cur_addr);
+ FlushDataCache(copy_src, copy_size);
+ R_UNLESS(dst_memory.WriteBlock(dst_address, copy_src, copy_size), ResultInvalidPointer);
+
+ dst_address += copy_size;
+ cur_addr += copy_size;
+ cur_size -= copy_size;
+ }
+
+ // Copy remaining data.
+ if (cur_size > 0) {
+ const void* copy_src = GetLinearMappedVirtualPointer(m_kernel, cur_addr);
+ FlushDataCache(copy_src, cur_size);
+ R_UNLESS(dst_memory.WriteBlock(dst_address, copy_src, cur_size), ResultInvalidPointer);
+ }
+
+ R_SUCCEED();
+ };
+
+ // Iterate.
+ while (tot_size < size) {
+ // Continue the traversal.
+ traverse_valid =
+ impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ // Perform copy.
+ R_TRY(PerformCopy());
+
+ // Advance.
+ dst_address += cur_size;
+
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we use the right size for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ // Perform copy for the last block.
+ R_TRY(PerformCopy());
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::WriteDebugMemory(KProcessAddress dst_address, KProcessAddress src_address,
+ size_t size) {
+ // Lightly validate the region is in range.
+ R_UNLESS(this->Contains(dst_address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Require that the memory either be user writable or debuggable.
+ const bool can_read = R_SUCCEEDED(this->CheckMemoryStateContiguous(
+ dst_address, size, KMemoryState::None, KMemoryState::None, KMemoryPermission::UserReadWrite,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::None, KMemoryAttribute::None));
+ if (!can_read) {
+ const bool can_debug = R_SUCCEEDED(this->CheckMemoryStateContiguous(
+ dst_address, size, KMemoryState::FlagCanDebug, KMemoryState::FlagCanDebug,
+ KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::None,
+ KMemoryAttribute::None));
+ R_UNLESS(can_debug, ResultInvalidCurrentMemory);
+ }
+
+ // Get the impl.
+ auto& impl = this->GetImpl();
+ auto& src_memory = GetCurrentMemory(m_system.Kernel());
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid =
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_address);
+ R_UNLESS(traverse_valid, ResultInvalidCurrentMemory);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ auto PerformCopy = [&]() -> Result {
+ // Ensure the address is linear mapped.
+ R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+
+ // Copy as much aligned data as we can.
+ if (cur_size >= sizeof(u32)) {
+ const size_t copy_size = Common::AlignDown(cur_size, sizeof(u32));
+ void* copy_dst = GetLinearMappedVirtualPointer(m_kernel, cur_addr);
+ R_UNLESS(src_memory.ReadBlock(src_address, copy_dst, copy_size),
+ ResultInvalidCurrentMemory);
+
+ StoreDataCache(GetLinearMappedVirtualPointer(m_kernel, cur_addr), copy_size);
+
+ src_address += copy_size;
+ cur_addr += copy_size;
+ cur_size -= copy_size;
+ }
+
+ // Copy remaining data.
+ if (cur_size > 0) {
+ void* copy_dst = GetLinearMappedVirtualPointer(m_kernel, cur_addr);
+ R_UNLESS(src_memory.ReadBlock(src_address, copy_dst, cur_size),
+ ResultInvalidCurrentMemory);
+
+ StoreDataCache(GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size);
+ }
+
+ R_SUCCEED();
+ };
+
+ // Iterate.
+ while (tot_size < size) {
+ // Continue the traversal.
+ traverse_valid =
+ impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ // Perform copy.
+ R_TRY(PerformCopy());
+
+ // Advance.
+ src_address += cur_size;
+
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we use the right size for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ // Perform copy for the last block.
+ R_TRY(PerformCopy());
+
+ // Invalidate the instruction cache, as this svc allows modifying executable pages.
+ InvalidateInstructionCache(m_system, dst_address, size);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::ReadIoMemoryImpl(KProcessAddress dst_addr, KPhysicalAddress phys_addr,
+ size_t size, KMemoryState state) {
+ // Check pre-conditions.
+ ASSERT(this->IsLockedByCurrentThread());
+
+ // Determine the mapping extents.
+ const KPhysicalAddress map_start = Common::AlignDown(GetInteger(phys_addr), PageSize);
+ const KPhysicalAddress map_end = Common::AlignUp(GetInteger(phys_addr) + size, PageSize);
+ const size_t map_size = map_end - map_start;
+
+ // Get the memory reference to write into.
+ auto& dst_memory = GetCurrentMemory(m_kernel);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Temporarily map the io memory.
+ KProcessAddress io_addr;
+ R_TRY(this->MapIoImpl(std::addressof(io_addr), updater.GetPageList(), map_start, map_size,
+ state, KMemoryPermission::UserRead));
+
+ // Ensure we unmap the io memory when we're done with it.
+ const KPageProperties unmap_properties =
+ KPageProperties{KMemoryPermission::None, false, false, DisableMergeAttribute::None};
+ SCOPE_EXIT({
+ R_ASSERT(this->Operate(updater.GetPageList(), io_addr, map_size / PageSize, 0, false,
+ unmap_properties, OperationType::Unmap, true));
+ });
+
+ // Read the memory.
+ const KProcessAddress read_addr = io_addr + (GetInteger(phys_addr) & (PageSize - 1));
+ dst_memory.CopyBlock(dst_addr, read_addr, size);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::WriteIoMemoryImpl(KPhysicalAddress phys_addr, KProcessAddress src_addr,
+ size_t size, KMemoryState state) {
+ // Check pre-conditions.
+ ASSERT(this->IsLockedByCurrentThread());
+
+ // Determine the mapping extents.
+ const KPhysicalAddress map_start = Common::AlignDown(GetInteger(phys_addr), PageSize);
+ const KPhysicalAddress map_end = Common::AlignUp(GetInteger(phys_addr) + size, PageSize);
+ const size_t map_size = map_end - map_start;
+
+ // Get the memory reference to read from.
+ auto& src_memory = GetCurrentMemory(m_kernel);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Temporarily map the io memory.
+ KProcessAddress io_addr;
+ R_TRY(this->MapIoImpl(std::addressof(io_addr), updater.GetPageList(), map_start, map_size,
+ state, KMemoryPermission::UserReadWrite));
+
+ // Ensure we unmap the io memory when we're done with it.
+ const KPageProperties unmap_properties =
+ KPageProperties{KMemoryPermission::None, false, false, DisableMergeAttribute::None};
+ SCOPE_EXIT({
+ R_ASSERT(this->Operate(updater.GetPageList(), io_addr, map_size / PageSize, 0, false,
+ unmap_properties, OperationType::Unmap, true));
+ });
+
+ // Write the memory.
+ const KProcessAddress write_addr = io_addr + (GetInteger(phys_addr) & (PageSize - 1));
+ R_UNLESS(src_memory.CopyBlock(write_addr, src_addr, size), ResultInvalidPointer);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::ReadDebugIoMemory(KProcessAddress dst_address, KProcessAddress src_address,
+ size_t size, KMemoryState state) {
+ // Lightly validate the range before doing anything else.
+ R_UNLESS(this->Contains(src_address, size), ResultInvalidCurrentMemory);
+
+ // We need to lock both this table, and the current process's table, so set up some aliases.
+ KPageTableBase& src_page_table = *this;
+ KPageTableBase& dst_page_table = GetCurrentProcess(m_kernel).GetPageTable().GetBasePageTable();
+
+ // Acquire the table locks.
+ KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
+
+ // Check that the desired range is readable io memory.
+ R_TRY(this->CheckMemoryStateContiguous(src_address, size, KMemoryState::All, state,
+ KMemoryPermission::UserRead, KMemoryPermission::UserRead,
+ KMemoryAttribute::None, KMemoryAttribute::None));
+
+ // Read the memory.
+ KProcessAddress dst = dst_address;
+ const KProcessAddress last_address = src_address + size - 1;
+ while (src_address <= last_address) {
+ // Get the current physical address.
+ KPhysicalAddress phys_addr;
+ ASSERT(src_page_table.GetPhysicalAddressLocked(std::addressof(phys_addr), src_address));
+
+ // Determine the current read size.
+ const size_t cur_size =
+ std::min<size_t>(last_address - src_address + 1,
+ Common::AlignDown(GetInteger(src_address) + PageSize, PageSize) -
+ GetInteger(src_address));
+
+ // Read.
+ R_TRY(dst_page_table.ReadIoMemoryImpl(dst, phys_addr, cur_size, state));
+
+ // Advance.
+ src_address += cur_size;
+ dst += cur_size;
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::WriteDebugIoMemory(KProcessAddress dst_address, KProcessAddress src_address,
+ size_t size, KMemoryState state) {
+ // Lightly validate the range before doing anything else.
+ R_UNLESS(this->Contains(dst_address, size), ResultInvalidCurrentMemory);
+
+ // We need to lock both this table, and the current process's table, so set up some aliases.
+ KPageTableBase& src_page_table = *this;
+ KPageTableBase& dst_page_table = GetCurrentProcess(m_kernel).GetPageTable().GetBasePageTable();
+
+ // Acquire the table locks.
+ KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
+
+ // Check that the desired range is writable io memory.
+ R_TRY(this->CheckMemoryStateContiguous(
+ dst_address, size, KMemoryState::All, state, KMemoryPermission::UserReadWrite,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::None, KMemoryAttribute::None));
+
+ // Read the memory.
+ KProcessAddress src = src_address;
+ const KProcessAddress last_address = dst_address + size - 1;
+ while (dst_address <= last_address) {
+ // Get the current physical address.
+ KPhysicalAddress phys_addr;
+ ASSERT(src_page_table.GetPhysicalAddressLocked(std::addressof(phys_addr), dst_address));
+
+ // Determine the current read size.
+ const size_t cur_size =
+ std::min<size_t>(last_address - dst_address + 1,
+ Common::AlignDown(GetInteger(dst_address) + PageSize, PageSize) -
+ GetInteger(dst_address));
+
+ // Read.
+ R_TRY(dst_page_table.WriteIoMemoryImpl(phys_addr, src, cur_size, state));
+
+ // Advance.
+ dst_address += cur_size;
+ src += cur_size;
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::LockForMapDeviceAddressSpace(bool* out_is_io, KProcessAddress address,
+ size_t size, KMemoryPermission perm,
+ bool is_aligned, bool check_heap) {
+ // Lightly validate the range before doing anything else.
+ const size_t num_pages = size / PageSize;
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the memory state.
+ const KMemoryState test_state =
+ (is_aligned ? KMemoryState::FlagCanAlignedDeviceMap : KMemoryState::FlagCanDeviceMap) |
+ (check_heap ? KMemoryState::FlagReferenceCounted : KMemoryState::None);
+ size_t num_allocator_blocks;
+ KMemoryState old_state;
+ R_TRY(this->CheckMemoryState(std::addressof(old_state), nullptr, nullptr,
+ std::addressof(num_allocator_blocks), address, size, test_state,
+ test_state, perm, perm,
+ KMemoryAttribute::IpcLocked | KMemoryAttribute::Locked,
+ KMemoryAttribute::None, KMemoryAttribute::DeviceShared));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // Update the memory blocks.
+ m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages,
+ &KMemoryBlock::ShareToDevice, KMemoryPermission::None);
+
+ // Set whether the locked memory was io.
+ *out_is_io =
+ static_cast<Svc::MemoryState>(old_state & KMemoryState::Mask) == Svc::MemoryState::Io;
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::LockForUnmapDeviceAddressSpace(KProcessAddress address, size_t size,
+ bool check_heap) {
+ // Lightly validate the range before doing anything else.
+ const size_t num_pages = size / PageSize;
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the memory state.
+ const KMemoryState test_state =
+ KMemoryState::FlagCanDeviceMap |
+ (check_heap ? KMemoryState::FlagReferenceCounted : KMemoryState::None);
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryStateContiguous(
+ std::addressof(num_allocator_blocks), address, size, test_state, test_state,
+ KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // Update the memory blocks.
+ const KMemoryBlockManager::MemoryBlockLockFunction lock_func =
+ m_enable_device_address_space_merge
+ ? &KMemoryBlock::UpdateDeviceDisableMergeStateForShare
+ : &KMemoryBlock::UpdateDeviceDisableMergeStateForShareRight;
+ m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages, lock_func,
+ KMemoryPermission::None);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnlockForDeviceAddressSpace(KProcessAddress address, size_t size) {
+ // Lightly validate the range before doing anything else.
+ const size_t num_pages = size / PageSize;
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check the memory state.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryStateContiguous(
+ std::addressof(num_allocator_blocks), address, size, KMemoryState::FlagCanDeviceMap,
+ KMemoryState::FlagCanDeviceMap, KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // Update the memory blocks.
+ m_memory_block_manager.UpdateLock(std::addressof(allocator), address, num_pages,
+ &KMemoryBlock::UnshareToDevice, KMemoryPermission::None);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::UnlockForDeviceAddressSpacePartialMap(KProcessAddress address, size_t size) {
+ // Lightly validate the range before doing anything else.
+ const size_t num_pages = size / PageSize;
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check memory state.
+ size_t allocator_num_blocks = 0;
+ R_TRY(this->CheckMemoryStateContiguous(
+ std::addressof(allocator_num_blocks), address, size, KMemoryState::FlagCanDeviceMap,
+ KMemoryState::FlagCanDeviceMap, KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
+
+ // Create an update allocator for the region.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, allocator_num_blocks);
+ R_TRY(allocator_result);
+
+ // Update the memory blocks.
+ m_memory_block_manager.UpdateLock(
+ std::addressof(allocator), address, num_pages,
+ m_enable_device_address_space_merge
+ ? &KMemoryBlock::UpdateDeviceDisableMergeStateForUnshare
+ : &KMemoryBlock::UpdateDeviceDisableMergeStateForUnshareRight,
+ KMemoryPermission::None);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::OpenMemoryRangeForMapDeviceAddressSpace(KPageTableBase::MemoryRange* out,
+ KProcessAddress address, size_t size,
+ KMemoryPermission perm,
+ bool is_aligned) {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Get the range.
+ const KMemoryState test_state =
+ (is_aligned ? KMemoryState::FlagCanAlignedDeviceMap : KMemoryState::FlagCanDeviceMap);
+ R_TRY(this->GetContiguousMemoryRangeWithState(
+ out, address, size, test_state, test_state, perm, perm,
+ KMemoryAttribute::IpcLocked | KMemoryAttribute::Locked, KMemoryAttribute::None));
+
+ // We got the range, so open it.
+ out->Open();
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::OpenMemoryRangeForUnmapDeviceAddressSpace(MemoryRange* out,
+ KProcessAddress address,
+ size_t size) {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Get the range.
+ R_TRY(this->GetContiguousMemoryRangeWithState(
+ out, address, size, KMemoryState::FlagCanDeviceMap, KMemoryState::FlagCanDeviceMap,
+ KMemoryPermission::None, KMemoryPermission::None,
+ KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked, KMemoryAttribute::DeviceShared));
+
+ // We got the range, so open it.
+ out->Open();
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::LockForIpcUserBuffer(KPhysicalAddress* out, KProcessAddress address,
+ size_t size) {
+ R_RETURN(this->LockMemoryAndOpen(
+ nullptr, out, address, size, KMemoryState::FlagCanIpcUserBuffer,
+ KMemoryState::FlagCanIpcUserBuffer, KMemoryPermission::All,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::All, KMemoryAttribute::None,
+ static_cast<KMemoryPermission>(KMemoryPermission::NotMapped |
+ KMemoryPermission::KernelReadWrite),
+ KMemoryAttribute::Locked));
+}
+
+Result KPageTableBase::UnlockForIpcUserBuffer(KProcessAddress address, size_t size) {
+ R_RETURN(this->UnlockMemory(address, size, KMemoryState::FlagCanIpcUserBuffer,
+ KMemoryState::FlagCanIpcUserBuffer, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::Locked, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::Locked, nullptr));
+}
+
+Result KPageTableBase::LockForTransferMemory(KPageGroup* out, KProcessAddress address, size_t size,
+ KMemoryPermission perm) {
+ R_RETURN(this->LockMemoryAndOpen(out, nullptr, address, size, KMemoryState::FlagCanTransfer,
+ KMemoryState::FlagCanTransfer, KMemoryPermission::All,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::All,
+ KMemoryAttribute::None, perm, KMemoryAttribute::Locked));
+}
+
+Result KPageTableBase::UnlockForTransferMemory(KProcessAddress address, size_t size,
+ const KPageGroup& pg) {
+ R_RETURN(this->UnlockMemory(address, size, KMemoryState::FlagCanTransfer,
+ KMemoryState::FlagCanTransfer, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::Locked, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::Locked, std::addressof(pg)));
+}
+
+Result KPageTableBase::LockForCodeMemory(KPageGroup* out, KProcessAddress address, size_t size) {
+ R_RETURN(this->LockMemoryAndOpen(
+ out, nullptr, address, size, KMemoryState::FlagCanCodeMemory,
+ KMemoryState::FlagCanCodeMemory, KMemoryPermission::All, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::All, KMemoryAttribute::None,
+ static_cast<KMemoryPermission>(KMemoryPermission::NotMapped |
+ KMemoryPermission::KernelReadWrite),
+ KMemoryAttribute::Locked));
+}
+
+Result KPageTableBase::UnlockForCodeMemory(KProcessAddress address, size_t size,
+ const KPageGroup& pg) {
+ R_RETURN(this->UnlockMemory(address, size, KMemoryState::FlagCanCodeMemory,
+ KMemoryState::FlagCanCodeMemory, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::Locked, KMemoryPermission::UserReadWrite,
+ KMemoryAttribute::Locked, std::addressof(pg)));
+}
+
+Result KPageTableBase::OpenMemoryRangeForProcessCacheOperation(MemoryRange* out,
+ KProcessAddress address,
+ size_t size) {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Get the range.
+ R_TRY(this->GetContiguousMemoryRangeWithState(
+ out, address, size, KMemoryState::FlagReferenceCounted, KMemoryState::FlagReferenceCounted,
+ KMemoryPermission::UserRead, KMemoryPermission::UserRead, KMemoryAttribute::Uncached,
+ KMemoryAttribute::None));
+
+ // We got the range, so open it.
+ out->Open();
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CopyMemoryFromLinearToUser(
+ KProcessAddress dst_addr, size_t size, KProcessAddress src_addr, KMemoryState src_state_mask,
+ KMemoryState src_state, KMemoryPermission src_test_perm, KMemoryAttribute src_attr_mask,
+ KMemoryAttribute src_attr) {
+ // Lightly validate the range before doing anything else.
+ R_UNLESS(this->Contains(src_addr, size), ResultInvalidCurrentMemory);
+
+ // Get the destination memory reference.
+ auto& dst_memory = GetCurrentMemory(m_kernel);
+
+ // Copy the memory.
+ {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check memory state.
+ R_TRY(this->CheckMemoryStateContiguous(
+ src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm,
+ src_attr_mask | KMemoryAttribute::Uncached, src_attr));
+
+ auto& impl = this->GetImpl();
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid =
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), src_addr);
+ ASSERT(traverse_valid);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size =
+ next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ auto PerformCopy = [&]() -> Result {
+ // Ensure the address is linear mapped.
+ R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+
+ // Copy as much aligned data as we can.
+ if (cur_size >= sizeof(u32)) {
+ const size_t copy_size = Common::AlignDown(cur_size, sizeof(u32));
+ R_UNLESS(dst_memory.WriteBlock(dst_addr,
+ GetLinearMappedVirtualPointer(m_kernel, cur_addr),
+ copy_size),
+ ResultInvalidCurrentMemory);
+
+ dst_addr += copy_size;
+ cur_addr += copy_size;
+ cur_size -= copy_size;
+ }
+
+ // Copy remaining data.
+ if (cur_size > 0) {
+ R_UNLESS(dst_memory.WriteBlock(
+ dst_addr, GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size),
+ ResultInvalidCurrentMemory);
+ }
+
+ R_SUCCEED();
+ };
+
+ // Iterate.
+ while (tot_size < size) {
+ // Continue the traversal.
+ traverse_valid =
+ impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ // Perform copy.
+ R_TRY(PerformCopy());
+
+ // Advance.
+ dst_addr += cur_size;
+
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we use the right size for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ // Perform copy for the last block.
+ R_TRY(PerformCopy());
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CopyMemoryFromLinearToKernel(
+ void* buffer, size_t size, KProcessAddress src_addr, KMemoryState src_state_mask,
+ KMemoryState src_state, KMemoryPermission src_test_perm, KMemoryAttribute src_attr_mask,
+ KMemoryAttribute src_attr) {
+ // Lightly validate the range before doing anything else.
+ R_UNLESS(this->Contains(src_addr, size), ResultInvalidCurrentMemory);
+
+ // Copy the memory.
+ {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check memory state.
+ R_TRY(this->CheckMemoryStateContiguous(
+ src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm,
+ src_attr_mask | KMemoryAttribute::Uncached, src_attr));
+
+ auto& impl = this->GetImpl();
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid =
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), src_addr);
+ ASSERT(traverse_valid);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size =
+ next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ auto PerformCopy = [&]() -> Result {
+ // Ensure the address is linear mapped.
+ R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+
+ // Copy the data.
+ std::memcpy(buffer, GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size);
+
+ R_SUCCEED();
+ };
+
+ // Iterate.
+ while (tot_size < size) {
+ // Continue the traversal.
+ traverse_valid =
+ impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ // Perform copy.
+ R_TRY(PerformCopy());
+
+ // Advance.
+ buffer = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(buffer) + cur_size);
+
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we use the right size for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ // Perform copy for the last block.
+ R_TRY(PerformCopy());
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CopyMemoryFromUserToLinear(
+ KProcessAddress dst_addr, size_t size, KMemoryState dst_state_mask, KMemoryState dst_state,
+ KMemoryPermission dst_test_perm, KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr,
+ KProcessAddress src_addr) {
+ // Lightly validate the range before doing anything else.
+ R_UNLESS(this->Contains(dst_addr, size), ResultInvalidCurrentMemory);
+
+ // Get the source memory reference.
+ auto& src_memory = GetCurrentMemory(m_kernel);
+
+ // Copy the memory.
+ {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check memory state.
+ R_TRY(this->CheckMemoryStateContiguous(
+ dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm,
+ dst_attr_mask | KMemoryAttribute::Uncached, dst_attr));
+
+ auto& impl = this->GetImpl();
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid =
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_addr);
+ ASSERT(traverse_valid);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size =
+ next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ auto PerformCopy = [&]() -> Result {
+ // Ensure the address is linear mapped.
+ R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+
+ // Copy as much aligned data as we can.
+ if (cur_size >= sizeof(u32)) {
+ const size_t copy_size = Common::AlignDown(cur_size, sizeof(u32));
+ R_UNLESS(src_memory.ReadBlock(src_addr,
+ GetLinearMappedVirtualPointer(m_kernel, cur_addr),
+ copy_size),
+ ResultInvalidCurrentMemory);
+ src_addr += copy_size;
+ cur_addr += copy_size;
+ cur_size -= copy_size;
+ }
+
+ // Copy remaining data.
+ if (cur_size > 0) {
+ R_UNLESS(src_memory.ReadBlock(
+ src_addr, GetLinearMappedVirtualPointer(m_kernel, cur_addr), cur_size),
+ ResultInvalidCurrentMemory);
+ }
+
+ R_SUCCEED();
+ };
+
+ // Iterate.
+ while (tot_size < size) {
+ // Continue the traversal.
+ traverse_valid =
+ impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ // Perform copy.
+ R_TRY(PerformCopy());
+
+ // Advance.
+ src_addr += cur_size;
+
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we use the right size for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ // Perform copy for the last block.
+ R_TRY(PerformCopy());
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CopyMemoryFromKernelToLinear(KProcessAddress dst_addr, size_t size,
+ KMemoryState dst_state_mask,
+ KMemoryState dst_state,
+ KMemoryPermission dst_test_perm,
+ KMemoryAttribute dst_attr_mask,
+ KMemoryAttribute dst_attr, void* buffer) {
+ // Lightly validate the range before doing anything else.
+ R_UNLESS(this->Contains(dst_addr, size), ResultInvalidCurrentMemory);
+
+ // Copy the memory.
+ {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Check memory state.
+ R_TRY(this->CheckMemoryStateContiguous(
+ dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm,
+ dst_attr_mask | KMemoryAttribute::Uncached, dst_attr));
+
+ auto& impl = this->GetImpl();
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid =
+ impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_addr);
+ ASSERT(traverse_valid);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_addr = next_entry.phys_addr;
+ size_t cur_size =
+ next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
+ size_t tot_size = cur_size;
+
+ auto PerformCopy = [&]() -> Result {
+ // Ensure the address is linear mapped.
+ R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), ResultInvalidCurrentMemory);
+
+ // Copy the data.
+ std::memcpy(GetLinearMappedVirtualPointer(m_kernel, cur_addr), buffer, cur_size);
+
+ R_SUCCEED();
+ };
+
+ // Iterate.
+ while (tot_size < size) {
+ // Continue the traversal.
+ traverse_valid =
+ impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ if (next_entry.phys_addr != (cur_addr + cur_size)) {
+ // Perform copy.
+ R_TRY(PerformCopy());
+
+ // Advance.
+ buffer = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(buffer) + cur_size);
+
+ cur_addr = next_entry.phys_addr;
+ cur_size = next_entry.block_size;
+ } else {
+ cur_size += next_entry.block_size;
+ }
+
+ tot_size += next_entry.block_size;
+ }
+
+ // Ensure we use the right size for the last block.
+ if (tot_size > size) {
+ cur_size -= (tot_size - size);
+ }
+
+ // Perform copy for the last block.
+ R_TRY(PerformCopy());
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CopyMemoryFromHeapToHeap(
+ KPageTableBase& dst_page_table, KProcessAddress dst_addr, size_t size,
+ KMemoryState dst_state_mask, KMemoryState dst_state, KMemoryPermission dst_test_perm,
+ KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr, KProcessAddress src_addr,
+ KMemoryState src_state_mask, KMemoryState src_state, KMemoryPermission src_test_perm,
+ KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr) {
+ // For convenience, alias this.
+ KPageTableBase& src_page_table = *this;
+
+ // Lightly validate the ranges before doing anything else.
+ R_UNLESS(src_page_table.Contains(src_addr, size), ResultInvalidCurrentMemory);
+ R_UNLESS(dst_page_table.Contains(dst_addr, size), ResultInvalidCurrentMemory);
+
+ // Copy the memory.
+ {
+ // Acquire the table locks.
+ KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
+
+ // Check memory state.
+ R_TRY(src_page_table.CheckMemoryStateContiguous(
+ src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm,
+ src_attr_mask | KMemoryAttribute::Uncached, src_attr));
+ R_TRY(dst_page_table.CheckMemoryStateContiguous(
+ dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm,
+ dst_attr_mask | KMemoryAttribute::Uncached, dst_attr));
+
+ // Get implementations.
+ auto& src_impl = src_page_table.GetImpl();
+ auto& dst_impl = dst_page_table.GetImpl();
+
+ // Prepare for traversal.
+ TraversalContext src_context;
+ TraversalContext dst_context;
+ TraversalEntry src_next_entry;
+ TraversalEntry dst_next_entry;
+ bool traverse_valid;
+
+ // Begin traversal.
+ traverse_valid = src_impl.BeginTraversal(std::addressof(src_next_entry),
+ std::addressof(src_context), src_addr);
+ ASSERT(traverse_valid);
+ traverse_valid = dst_impl.BeginTraversal(std::addressof(dst_next_entry),
+ std::addressof(dst_context), dst_addr);
+ ASSERT(traverse_valid);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_src_block_addr = src_next_entry.phys_addr;
+ KPhysicalAddress cur_dst_block_addr = dst_next_entry.phys_addr;
+ size_t cur_src_size = src_next_entry.block_size -
+ (GetInteger(cur_src_block_addr) & (src_next_entry.block_size - 1));
+ size_t cur_dst_size = dst_next_entry.block_size -
+ (GetInteger(cur_dst_block_addr) & (dst_next_entry.block_size - 1));
+
+ // Adjust the initial block sizes.
+ src_next_entry.block_size = cur_src_size;
+ dst_next_entry.block_size = cur_dst_size;
+
+ // Before we get any crazier, succeed if there's nothing to do.
+ R_SUCCEED_IF(size == 0);
+
+ // We're going to manage dual traversal via an offset against the total size.
+ KPhysicalAddress cur_src_addr = cur_src_block_addr;
+ KPhysicalAddress cur_dst_addr = cur_dst_block_addr;
+ size_t cur_min_size = std::min<size_t>(cur_src_size, cur_dst_size);
+
+ // Iterate.
+ size_t ofs = 0;
+ while (ofs < size) {
+ // Determine how much we can copy this iteration.
+ const size_t cur_copy_size = std::min<size_t>(cur_min_size, size - ofs);
+
+ // If we need to advance the traversals, do so.
+ bool updated_src = false, updated_dst = false, skip_copy = false;
+ if (ofs + cur_copy_size != size) {
+ if (cur_src_addr + cur_min_size == cur_src_block_addr + cur_src_size) {
+ // Continue the src traversal.
+ traverse_valid = src_impl.ContinueTraversal(std::addressof(src_next_entry),
+ std::addressof(src_context));
+ ASSERT(traverse_valid);
+
+ // Update source.
+ updated_src = cur_src_addr + cur_min_size != src_next_entry.phys_addr;
+ }
+
+ if (cur_dst_addr + cur_min_size ==
+ dst_next_entry.phys_addr + dst_next_entry.block_size) {
+ // Continue the dst traversal.
+ traverse_valid = dst_impl.ContinueTraversal(std::addressof(dst_next_entry),
+ std::addressof(dst_context));
+ ASSERT(traverse_valid);
+
+ // Update destination.
+ updated_dst = cur_dst_addr + cur_min_size != dst_next_entry.phys_addr;
+ }
+
+ // If we didn't update either of source/destination, skip the copy this iteration.
+ if (!updated_src && !updated_dst) {
+ skip_copy = true;
+
+ // Update the source block address.
+ cur_src_block_addr = src_next_entry.phys_addr;
+ }
+ }
+
+ // Do the copy, unless we're skipping it.
+ if (!skip_copy) {
+ // We need both ends of the copy to be heap blocks.
+ R_UNLESS(IsHeapPhysicalAddress(cur_src_addr), ResultInvalidCurrentMemory);
+ R_UNLESS(IsHeapPhysicalAddress(cur_dst_addr), ResultInvalidCurrentMemory);
+
+ // Copy the data.
+ std::memcpy(GetHeapVirtualPointer(m_kernel, cur_dst_addr),
+ GetHeapVirtualPointer(m_kernel, cur_src_addr), cur_copy_size);
+
+ // Update.
+ cur_src_block_addr = src_next_entry.phys_addr;
+ cur_src_addr = updated_src ? cur_src_block_addr : cur_src_addr + cur_copy_size;
+ cur_dst_block_addr = dst_next_entry.phys_addr;
+ cur_dst_addr = updated_dst ? cur_dst_block_addr : cur_dst_addr + cur_copy_size;
+
+ // Advance offset.
+ ofs += cur_copy_size;
+ }
+
+ // Update min size.
+ cur_src_size = src_next_entry.block_size;
+ cur_dst_size = dst_next_entry.block_size;
+ cur_min_size = std::min<size_t>(cur_src_block_addr - cur_src_addr + cur_src_size,
+ cur_dst_block_addr - cur_dst_addr + cur_dst_size);
+ }
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CopyMemoryFromHeapToHeapWithoutCheckDestination(
+ KPageTableBase& dst_page_table, KProcessAddress dst_addr, size_t size,
+ KMemoryState dst_state_mask, KMemoryState dst_state, KMemoryPermission dst_test_perm,
+ KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr, KProcessAddress src_addr,
+ KMemoryState src_state_mask, KMemoryState src_state, KMemoryPermission src_test_perm,
+ KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr) {
+ // For convenience, alias this.
+ KPageTableBase& src_page_table = *this;
+
+ // Lightly validate the ranges before doing anything else.
+ R_UNLESS(src_page_table.Contains(src_addr, size), ResultInvalidCurrentMemory);
+ R_UNLESS(dst_page_table.Contains(dst_addr, size), ResultInvalidCurrentMemory);
+
+ // Copy the memory.
+ {
+ // Acquire the table locks.
+ KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
+
+ // Check memory state for source.
+ R_TRY(src_page_table.CheckMemoryStateContiguous(
+ src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm,
+ src_attr_mask | KMemoryAttribute::Uncached, src_attr));
+
+ // Destination state is intentionally unchecked.
+
+ // Get implementations.
+ auto& src_impl = src_page_table.GetImpl();
+ auto& dst_impl = dst_page_table.GetImpl();
+
+ // Prepare for traversal.
+ TraversalContext src_context;
+ TraversalContext dst_context;
+ TraversalEntry src_next_entry;
+ TraversalEntry dst_next_entry;
+ bool traverse_valid;
+
+ // Begin traversal.
+ traverse_valid = src_impl.BeginTraversal(std::addressof(src_next_entry),
+ std::addressof(src_context), src_addr);
+ ASSERT(traverse_valid);
+ traverse_valid = dst_impl.BeginTraversal(std::addressof(dst_next_entry),
+ std::addressof(dst_context), dst_addr);
+ ASSERT(traverse_valid);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_src_block_addr = src_next_entry.phys_addr;
+ KPhysicalAddress cur_dst_block_addr = dst_next_entry.phys_addr;
+ size_t cur_src_size = src_next_entry.block_size -
+ (GetInteger(cur_src_block_addr) & (src_next_entry.block_size - 1));
+ size_t cur_dst_size = dst_next_entry.block_size -
+ (GetInteger(cur_dst_block_addr) & (dst_next_entry.block_size - 1));
+
+ // Adjust the initial block sizes.
+ src_next_entry.block_size = cur_src_size;
+ dst_next_entry.block_size = cur_dst_size;
+
+ // Before we get any crazier, succeed if there's nothing to do.
+ R_SUCCEED_IF(size == 0);
+
+ // We're going to manage dual traversal via an offset against the total size.
+ KPhysicalAddress cur_src_addr = cur_src_block_addr;
+ KPhysicalAddress cur_dst_addr = cur_dst_block_addr;
+ size_t cur_min_size = std::min<size_t>(cur_src_size, cur_dst_size);
+
+ // Iterate.
+ size_t ofs = 0;
+ while (ofs < size) {
+ // Determine how much we can copy this iteration.
+ const size_t cur_copy_size = std::min<size_t>(cur_min_size, size - ofs);
+
+ // If we need to advance the traversals, do so.
+ bool updated_src = false, updated_dst = false, skip_copy = false;
+ if (ofs + cur_copy_size != size) {
+ if (cur_src_addr + cur_min_size == cur_src_block_addr + cur_src_size) {
+ // Continue the src traversal.
+ traverse_valid = src_impl.ContinueTraversal(std::addressof(src_next_entry),
+ std::addressof(src_context));
+ ASSERT(traverse_valid);
+
+ // Update source.
+ updated_src = cur_src_addr + cur_min_size != src_next_entry.phys_addr;
+ }
+
+ if (cur_dst_addr + cur_min_size ==
+ dst_next_entry.phys_addr + dst_next_entry.block_size) {
+ // Continue the dst traversal.
+ traverse_valid = dst_impl.ContinueTraversal(std::addressof(dst_next_entry),
+ std::addressof(dst_context));
+ ASSERT(traverse_valid);
+
+ // Update destination.
+ updated_dst = cur_dst_addr + cur_min_size != dst_next_entry.phys_addr;
+ }
+
+ // If we didn't update either of source/destination, skip the copy this iteration.
+ if (!updated_src && !updated_dst) {
+ skip_copy = true;
+
+ // Update the source block address.
+ cur_src_block_addr = src_next_entry.phys_addr;
+ }
+ }
+
+ // Do the copy, unless we're skipping it.
+ if (!skip_copy) {
+ // We need both ends of the copy to be heap blocks.
+ R_UNLESS(IsHeapPhysicalAddress(cur_src_addr), ResultInvalidCurrentMemory);
+ R_UNLESS(IsHeapPhysicalAddress(cur_dst_addr), ResultInvalidCurrentMemory);
+
+ // Copy the data.
+ std::memcpy(GetHeapVirtualPointer(m_kernel, cur_dst_addr),
+ GetHeapVirtualPointer(m_kernel, cur_src_addr), cur_copy_size);
+
+ // Update.
+ cur_src_block_addr = src_next_entry.phys_addr;
+ cur_src_addr = updated_src ? cur_src_block_addr : cur_src_addr + cur_copy_size;
+ cur_dst_block_addr = dst_next_entry.phys_addr;
+ cur_dst_addr = updated_dst ? cur_dst_block_addr : cur_dst_addr + cur_copy_size;
+
+ // Advance offset.
+ ofs += cur_copy_size;
+ }
+
+ // Update min size.
+ cur_src_size = src_next_entry.block_size;
+ cur_dst_size = dst_next_entry.block_size;
+ cur_min_size = std::min<size_t>(cur_src_block_addr - cur_src_addr + cur_src_size,
+ cur_dst_block_addr - cur_dst_addr + cur_dst_size);
+ }
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::SetupForIpcClient(PageLinkedList* page_list, size_t* out_blocks_needed,
+ KProcessAddress address, size_t size,
+ KMemoryPermission test_perm, KMemoryState dst_state) {
+ // Validate pre-conditions.
+ ASSERT(this->IsLockedByCurrentThread());
+ ASSERT(test_perm == KMemoryPermission::UserReadWrite ||
+ test_perm == KMemoryPermission::UserRead);
+
+ // Check that the address is in range.
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Get the source permission.
+ const auto src_perm = static_cast<KMemoryPermission>(
+ (test_perm == KMemoryPermission::UserReadWrite)
+ ? KMemoryPermission::KernelReadWrite | KMemoryPermission::NotMapped
+ : KMemoryPermission::UserRead);
+
+ // Get aligned extents.
+ const KProcessAddress aligned_src_start = Common::AlignDown(GetInteger(address), PageSize);
+ const KProcessAddress aligned_src_end = Common::AlignUp(GetInteger(address) + size, PageSize);
+ const KProcessAddress mapping_src_start = Common::AlignUp(GetInteger(address), PageSize);
+ const KProcessAddress mapping_src_end = Common::AlignDown(GetInteger(address) + size, PageSize);
+
+ const auto aligned_src_last = GetInteger(aligned_src_end) - 1;
+ const auto mapping_src_last = GetInteger(mapping_src_end) - 1;
+
+ // Get the test state and attribute mask.
+ KMemoryState test_state;
+ KMemoryAttribute test_attr_mask;
+ switch (dst_state) {
+ case KMemoryState::Ipc:
+ test_state = KMemoryState::FlagCanUseIpc;
+ test_attr_mask =
+ KMemoryAttribute::Uncached | KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked;
+ break;
+ case KMemoryState::NonSecureIpc:
+ test_state = KMemoryState::FlagCanUseNonSecureIpc;
+ test_attr_mask = KMemoryAttribute::Uncached | KMemoryAttribute::Locked;
+ break;
+ case KMemoryState::NonDeviceIpc:
+ test_state = KMemoryState::FlagCanUseNonDeviceIpc;
+ test_attr_mask = KMemoryAttribute::Uncached | KMemoryAttribute::Locked;
+ break;
+ default:
+ R_THROW(ResultInvalidCombination);
+ }
+
+ // Ensure that on failure, we roll back appropriately.
+ size_t mapped_size = 0;
+ ON_RESULT_FAILURE {
+ if (mapped_size > 0) {
+ this->CleanupForIpcClientOnServerSetupFailure(page_list, mapping_src_start, mapped_size,
+ src_perm);
+ }
+ };
+
+ size_t blocks_needed = 0;
+
+ // Iterate, mapping as needed.
+ KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(aligned_src_start);
+ while (true) {
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // Validate the current block.
+ R_TRY(this->CheckMemoryState(info, test_state, test_state, test_perm, test_perm,
+ test_attr_mask, KMemoryAttribute::None));
+
+ if (mapping_src_start < mapping_src_end &&
+ GetInteger(mapping_src_start) < info.GetEndAddress() &&
+ info.GetAddress() < GetInteger(mapping_src_end)) {
+ const auto cur_start = info.GetAddress() >= GetInteger(mapping_src_start)
+ ? info.GetAddress()
+ : GetInteger(mapping_src_start);
+ const auto cur_end = mapping_src_last >= info.GetLastAddress()
+ ? info.GetEndAddress()
+ : GetInteger(mapping_src_end);
+ const size_t cur_size = cur_end - cur_start;
+
+ if (info.GetAddress() < GetInteger(mapping_src_start)) {
+ ++blocks_needed;
+ }
+ if (mapping_src_last < info.GetLastAddress()) {
+ ++blocks_needed;
+ }
+
+ // Set the permissions on the block, if we need to.
+ if ((info.GetPermission() & KMemoryPermission::IpcLockChangeMask) != src_perm) {
+ const DisableMergeAttribute head_body_attr =
+ (GetInteger(mapping_src_start) >= info.GetAddress())
+ ? DisableMergeAttribute::DisableHeadAndBody
+ : DisableMergeAttribute::None;
+ const DisableMergeAttribute tail_attr = (cur_end == GetInteger(mapping_src_end))
+ ? DisableMergeAttribute::DisableTail
+ : DisableMergeAttribute::None;
+ const KPageProperties properties = {
+ src_perm, false, false,
+ static_cast<DisableMergeAttribute>(head_body_attr | tail_attr)};
+ R_TRY(this->Operate(page_list, cur_start, cur_size / PageSize, 0, false, properties,
+ OperationType::ChangePermissions, false));
+ }
+
+ // Note that we mapped this part.
+ mapped_size += cur_size;
+ }
+
+ // If the block is at the end, we're done.
+ if (aligned_src_last <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ ++it;
+ ASSERT(it != m_memory_block_manager.end());
+ }
+
+ if (out_blocks_needed != nullptr) {
+ ASSERT(blocks_needed <= KMemoryBlockManagerUpdateAllocator::MaxBlocks);
+ *out_blocks_needed = blocks_needed;
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::SetupForIpcServer(KProcessAddress* out_addr, size_t size,
+ KProcessAddress src_addr, KMemoryPermission test_perm,
+ KMemoryState dst_state, KPageTableBase& src_page_table,
+ bool send) {
+ ASSERT(this->IsLockedByCurrentThread());
+ ASSERT(src_page_table.IsLockedByCurrentThread());
+
+ // Check that we can theoretically map.
+ const KProcessAddress region_start = m_alias_region_start;
+ const size_t region_size = m_alias_region_end - m_alias_region_start;
+ R_UNLESS(size < region_size, ResultOutOfAddressSpace);
+
+ // Get aligned source extents.
+ const KProcessAddress src_start = src_addr;
+ const KProcessAddress src_end = src_addr + size;
+ const KProcessAddress aligned_src_start = Common::AlignDown(GetInteger(src_start), PageSize);
+ const KProcessAddress aligned_src_end = Common::AlignUp(GetInteger(src_start) + size, PageSize);
+ const KProcessAddress mapping_src_start = Common::AlignUp(GetInteger(src_start), PageSize);
+ const KProcessAddress mapping_src_end =
+ Common::AlignDown(GetInteger(src_start) + size, PageSize);
+ const size_t aligned_src_size = aligned_src_end - aligned_src_start;
+ const size_t mapping_src_size =
+ (mapping_src_start < mapping_src_end) ? (mapping_src_end - mapping_src_start) : 0;
+
+ // Select a random address to map at.
+ KProcessAddress dst_addr = 0;
+ {
+ const size_t alignment = 4_KiB;
+ const size_t offset = GetInteger(aligned_src_start) & (alignment - 1);
+
+ dst_addr =
+ this->FindFreeArea(region_start, region_size / PageSize, aligned_src_size / PageSize,
+ alignment, offset, this->GetNumGuardPages());
+ R_UNLESS(dst_addr != 0, ResultOutOfAddressSpace);
+ }
+
+ // Check that we can perform the operation we're about to perform.
+ ASSERT(this->CanContain(dst_addr, aligned_src_size, dst_state));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Reserve space for any partial pages we allocate.
+ const size_t unmapped_size = aligned_src_size - mapping_src_size;
+ KScopedResourceReservation memory_reservation(
+ m_resource_limit, Svc::LimitableResource::PhysicalMemoryMax, unmapped_size);
+ R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
+
+ // Ensure that we manage page references correctly.
+ KPhysicalAddress start_partial_page = 0;
+ KPhysicalAddress end_partial_page = 0;
+ KProcessAddress cur_mapped_addr = dst_addr;
+
+ // If the partial pages are mapped, an extra reference will have been opened. Otherwise, they'll
+ // free on scope exit.
+ SCOPE_EXIT({
+ if (start_partial_page != 0) {
+ m_kernel.MemoryManager().Close(start_partial_page, 1);
+ }
+ if (end_partial_page != 0) {
+ m_kernel.MemoryManager().Close(end_partial_page, 1);
+ }
+ });
+
+ ON_RESULT_FAILURE {
+ if (cur_mapped_addr != dst_addr) {
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_ASSERT(this->Operate(updater.GetPageList(), dst_addr,
+ (cur_mapped_addr - dst_addr) / PageSize, 0, false,
+ unmap_properties, OperationType::Unmap, true));
+ }
+ };
+
+ // Allocate the start page as needed.
+ if (aligned_src_start < mapping_src_start) {
+ start_partial_page =
+ m_kernel.MemoryManager().AllocateAndOpenContinuous(1, 1, m_allocate_option);
+ R_UNLESS(start_partial_page != 0, ResultOutOfMemory);
+ }
+
+ // Allocate the end page as needed.
+ if (mapping_src_end < aligned_src_end &&
+ (aligned_src_start < mapping_src_end || aligned_src_start == mapping_src_start)) {
+ end_partial_page =
+ m_kernel.MemoryManager().AllocateAndOpenContinuous(1, 1, m_allocate_option);
+ R_UNLESS(end_partial_page != 0, ResultOutOfMemory);
+ }
+
+ // Get the implementation.
+ auto& src_impl = src_page_table.GetImpl();
+
+ // Get the fill value for partial pages.
+ const auto fill_val = m_ipc_fill_value;
+
+ // Begin traversal.
+ TraversalContext context;
+ TraversalEntry next_entry;
+ bool traverse_valid = src_impl.BeginTraversal(std::addressof(next_entry),
+ std::addressof(context), aligned_src_start);
+ ASSERT(traverse_valid);
+
+ // Prepare tracking variables.
+ KPhysicalAddress cur_block_addr = next_entry.phys_addr;
+ size_t cur_block_size =
+ next_entry.block_size - (GetInteger(cur_block_addr) & (next_entry.block_size - 1));
+ size_t tot_block_size = cur_block_size;
+
+ // Map the start page, if we have one.
+ if (start_partial_page != 0) {
+ // Ensure the page holds correct data.
+ u8* const start_partial_virt = GetHeapVirtualPointer(m_kernel, start_partial_page);
+ if (send) {
+ const size_t partial_offset = src_start - aligned_src_start;
+ size_t copy_size, clear_size;
+ if (src_end < mapping_src_start) {
+ copy_size = size;
+ clear_size = mapping_src_start - src_end;
+ } else {
+ copy_size = mapping_src_start - src_start;
+ clear_size = 0;
+ }
+
+ std::memset(start_partial_virt, fill_val, partial_offset);
+ std::memcpy(start_partial_virt + partial_offset,
+ GetHeapVirtualPointer(m_kernel, cur_block_addr) + partial_offset,
+ copy_size);
+ if (clear_size > 0) {
+ std::memset(start_partial_virt + partial_offset + copy_size, fill_val, clear_size);
+ }
+ } else {
+ std::memset(start_partial_virt, fill_val, PageSize);
+ }
+
+ // Map the page.
+ const KPageProperties start_map_properties = {test_perm, false, false,
+ DisableMergeAttribute::DisableHead};
+ R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, 1, start_partial_page, true,
+ start_map_properties, OperationType::Map, false));
+
+ // Update tracking extents.
+ cur_mapped_addr += PageSize;
+ cur_block_addr += PageSize;
+ cur_block_size -= PageSize;
+
+ // If the block's size was one page, we may need to continue traversal.
+ if (cur_block_size == 0 && aligned_src_size > PageSize) {
+ traverse_valid =
+ src_impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ cur_block_addr = next_entry.phys_addr;
+ cur_block_size = next_entry.block_size;
+ tot_block_size += next_entry.block_size;
+ }
+ }
+
+ // Map the remaining pages.
+ while (aligned_src_start + tot_block_size < mapping_src_end) {
+ // Continue the traversal.
+ traverse_valid =
+ src_impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ // Process the block.
+ if (next_entry.phys_addr != cur_block_addr + cur_block_size) {
+ // Map the block we've been processing so far.
+ const KPageProperties map_properties = {test_perm, false, false,
+ (cur_mapped_addr == dst_addr)
+ ? DisableMergeAttribute::DisableHead
+ : DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, cur_block_size / PageSize,
+ cur_block_addr, true, map_properties, OperationType::Map, false));
+
+ // Update tracking extents.
+ cur_mapped_addr += cur_block_size;
+ cur_block_addr = next_entry.phys_addr;
+ cur_block_size = next_entry.block_size;
+ } else {
+ cur_block_size += next_entry.block_size;
+ }
+ tot_block_size += next_entry.block_size;
+ }
+
+ // Handle the last direct-mapped page.
+ if (const KProcessAddress mapped_block_end =
+ aligned_src_start + tot_block_size - cur_block_size;
+ mapped_block_end < mapping_src_end) {
+ const size_t last_block_size = mapping_src_end - mapped_block_end;
+
+ // Map the last block.
+ const KPageProperties map_properties = {test_perm, false, false,
+ (cur_mapped_addr == dst_addr)
+ ? DisableMergeAttribute::DisableHead
+ : DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, last_block_size / PageSize,
+ cur_block_addr, true, map_properties, OperationType::Map, false));
+
+ // Update tracking extents.
+ cur_mapped_addr += last_block_size;
+ cur_block_addr += last_block_size;
+ if (mapped_block_end + cur_block_size < aligned_src_end &&
+ cur_block_size == last_block_size) {
+ traverse_valid =
+ src_impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
+ ASSERT(traverse_valid);
+
+ cur_block_addr = next_entry.phys_addr;
+ }
+ }
+
+ // Map the end page, if we have one.
+ if (end_partial_page != 0) {
+ // Ensure the page holds correct data.
+ u8* const end_partial_virt = GetHeapVirtualPointer(m_kernel, end_partial_page);
+ if (send) {
+ const size_t copy_size = src_end - mapping_src_end;
+ std::memcpy(end_partial_virt, GetHeapVirtualPointer(m_kernel, cur_block_addr),
+ copy_size);
+ std::memset(end_partial_virt + copy_size, fill_val, PageSize - copy_size);
+ } else {
+ std::memset(end_partial_virt, fill_val, PageSize);
+ }
+
+ // Map the page.
+ const KPageProperties map_properties = {test_perm, false, false,
+ (cur_mapped_addr == dst_addr)
+ ? DisableMergeAttribute::DisableHead
+ : DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), cur_mapped_addr, 1, end_partial_page, true,
+ map_properties, OperationType::Map, false));
+ }
+
+ // Update memory blocks to reflect our changes
+ m_memory_block_manager.Update(std::addressof(allocator), dst_addr, aligned_src_size / PageSize,
+ dst_state, test_perm, KMemoryAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ // Set the output address.
+ *out_addr = dst_addr + (src_start - aligned_src_start);
+
+ // We succeeded.
+ memory_reservation.Commit();
+ R_SUCCEED();
+}
+
+Result KPageTableBase::SetupForIpc(KProcessAddress* out_dst_addr, size_t size,
+ KProcessAddress src_addr, KPageTableBase& src_page_table,
+ KMemoryPermission test_perm, KMemoryState dst_state, bool send) {
+ // For convenience, alias this.
+ KPageTableBase& dst_page_table = *this;
+
+ // Acquire the table locks.
+ KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(std::addressof(src_page_table));
+
+ // Perform client setup.
+ size_t num_allocator_blocks;
+ R_TRY(src_page_table.SetupForIpcClient(updater.GetPageList(),
+ std::addressof(num_allocator_blocks), src_addr, size,
+ test_perm, dst_state));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ src_page_table.m_memory_block_slab_manager,
+ num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // Get the mapped extents.
+ const KProcessAddress src_map_start = Common::AlignUp(GetInteger(src_addr), PageSize);
+ const KProcessAddress src_map_end = Common::AlignDown(GetInteger(src_addr) + size, PageSize);
+ const size_t src_map_size = src_map_end - src_map_start;
+
+ // Ensure that we clean up appropriately if we fail after this.
+ const auto src_perm = static_cast<KMemoryPermission>(
+ (test_perm == KMemoryPermission::UserReadWrite)
+ ? KMemoryPermission::KernelReadWrite | KMemoryPermission::NotMapped
+ : KMemoryPermission::UserRead);
+ ON_RESULT_FAILURE {
+ if (src_map_end > src_map_start) {
+ src_page_table.CleanupForIpcClientOnServerSetupFailure(
+ updater.GetPageList(), src_map_start, src_map_size, src_perm);
+ }
+ };
+
+ // Perform server setup.
+ R_TRY(dst_page_table.SetupForIpcServer(out_dst_addr, size, src_addr, test_perm, dst_state,
+ src_page_table, send));
+
+ // If anything was mapped, ipc-lock the pages.
+ if (src_map_start < src_map_end) {
+ // Get the source permission.
+ src_page_table.m_memory_block_manager.UpdateLock(std::addressof(allocator), src_map_start,
+ (src_map_end - src_map_start) / PageSize,
+ &KMemoryBlock::LockForIpc, src_perm);
+ }
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CleanupForIpcServer(KProcessAddress address, size_t size,
+ KMemoryState dst_state) {
+ // Validate the address.
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Validate the memory state.
+ size_t num_allocator_blocks;
+ R_TRY(this->CheckMemoryState(std::addressof(num_allocator_blocks), address, size,
+ KMemoryState::All, dst_state, KMemoryPermission::UserRead,
+ KMemoryPermission::UserRead, KMemoryAttribute::All,
+ KMemoryAttribute::None));
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Get aligned extents.
+ const KProcessAddress aligned_start = Common::AlignDown(GetInteger(address), PageSize);
+ const KProcessAddress aligned_end = Common::AlignUp(GetInteger(address) + size, PageSize);
+ const size_t aligned_size = aligned_end - aligned_start;
+ const size_t aligned_num_pages = aligned_size / PageSize;
+
+ // Unmap the pages.
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), aligned_start, aligned_num_pages, 0, false,
+ unmap_properties, OperationType::Unmap, false));
+
+ // Update memory blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), aligned_start, aligned_num_pages,
+ KMemoryState::None, KMemoryPermission::None,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal);
+
+ // Release from the resource limit as relevant.
+ const KProcessAddress mapping_start = Common::AlignUp(GetInteger(address), PageSize);
+ const KProcessAddress mapping_end = Common::AlignDown(GetInteger(address) + size, PageSize);
+ const size_t mapping_size = (mapping_start < mapping_end) ? mapping_end - mapping_start : 0;
+ m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
+ aligned_size - mapping_size);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::CleanupForIpcClient(KProcessAddress address, size_t size,
+ KMemoryState dst_state) {
+ // Validate the address.
+ R_UNLESS(this->Contains(address, size), ResultInvalidCurrentMemory);
+
+ // Get aligned source extents.
+ const KProcessAddress mapping_start = Common::AlignUp(GetInteger(address), PageSize);
+ const KProcessAddress mapping_end = Common::AlignDown(GetInteger(address) + size, PageSize);
+ const KProcessAddress mapping_last = mapping_end - 1;
+ const size_t mapping_size = (mapping_start < mapping_end) ? (mapping_end - mapping_start) : 0;
+
+ // If nothing was mapped, we're actually done immediately.
+ R_SUCCEED_IF(mapping_size == 0);
+
+ // Get the test state and attribute mask.
+ KMemoryState test_state;
+ KMemoryAttribute test_attr_mask;
+ switch (dst_state) {
+ case KMemoryState::Ipc:
+ test_state = KMemoryState::FlagCanUseIpc;
+ test_attr_mask =
+ KMemoryAttribute::Uncached | KMemoryAttribute::DeviceShared | KMemoryAttribute::Locked;
+ break;
+ case KMemoryState::NonSecureIpc:
+ test_state = KMemoryState::FlagCanUseNonSecureIpc;
+ test_attr_mask = KMemoryAttribute::Uncached | KMemoryAttribute::Locked;
+ break;
+ case KMemoryState::NonDeviceIpc:
+ test_state = KMemoryState::FlagCanUseNonDeviceIpc;
+ test_attr_mask = KMemoryAttribute::Uncached | KMemoryAttribute::Locked;
+ break;
+ default:
+ R_THROW(ResultInvalidCombination);
+ }
+
+ // Lock the table.
+ // NOTE: Nintendo does this *after* creating the updater below, but this does not follow
+ // convention elsewhere in KPageTableBase.
+ KScopedLightLock lk(m_general_lock);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Ensure that on failure, we roll back appropriately.
+ size_t mapped_size = 0;
+ ON_RESULT_FAILURE {
+ if (mapped_size > 0) {
+ // Determine where the mapping ends.
+ const auto mapped_end = GetInteger(mapping_start) + mapped_size;
+ const auto mapped_last = mapped_end - 1;
+
+ // Get current and next iterators.
+ KMemoryBlockManager::const_iterator start_it =
+ m_memory_block_manager.FindIterator(mapping_start);
+ KMemoryBlockManager::const_iterator next_it = start_it;
+ ++next_it;
+
+ // Get the current block info.
+ KMemoryInfo cur_info = start_it->GetMemoryInfo();
+
+ // Create tracking variables.
+ KProcessAddress cur_address = cur_info.GetAddress();
+ size_t cur_size = cur_info.GetSize();
+ bool cur_perm_eq = cur_info.GetPermission() == cur_info.GetOriginalPermission();
+ bool cur_needs_set_perm = !cur_perm_eq && cur_info.GetIpcLockCount() == 1;
+ bool first = cur_info.GetIpcDisableMergeCount() == 1 &&
+ False(cur_info.GetDisableMergeAttribute() &
+ KMemoryBlockDisableMergeAttribute::Locked);
+
+ while ((GetInteger(cur_address) + cur_size - 1) < mapped_last) {
+ // Check that we have a next block.
+ ASSERT(next_it != m_memory_block_manager.end());
+
+ // Get the next info.
+ const KMemoryInfo next_info = next_it->GetMemoryInfo();
+
+ // Check if we can consolidate the next block's permission set with the current one.
+ const bool next_perm_eq =
+ next_info.GetPermission() == next_info.GetOriginalPermission();
+ const bool next_needs_set_perm = !next_perm_eq && next_info.GetIpcLockCount() == 1;
+ if (cur_perm_eq == next_perm_eq && cur_needs_set_perm == next_needs_set_perm &&
+ cur_info.GetOriginalPermission() == next_info.GetOriginalPermission()) {
+ // We can consolidate the reprotection for the current and next block into a
+ // single call.
+ cur_size += next_info.GetSize();
+ } else {
+ // We have to operate on the current block.
+ if ((cur_needs_set_perm || first) && !cur_perm_eq) {
+ const KPageProperties properties = {
+ cur_info.GetPermission(), false, false,
+ first ? DisableMergeAttribute::EnableAndMergeHeadBodyTail
+ : DisableMergeAttribute::None};
+ R_ASSERT(this->Operate(updater.GetPageList(), cur_address,
+ cur_size / PageSize, 0, false, properties,
+ OperationType::ChangePermissions, true));
+ }
+
+ // Advance.
+ cur_address = next_info.GetAddress();
+ cur_size = next_info.GetSize();
+ first = false;
+ }
+
+ // Advance.
+ cur_info = next_info;
+ cur_perm_eq = next_perm_eq;
+ cur_needs_set_perm = next_needs_set_perm;
+ ++next_it;
+ }
+
+ // Process the last block.
+ if ((first || cur_needs_set_perm) && !cur_perm_eq) {
+ const KPageProperties properties = {
+ cur_info.GetPermission(), false, false,
+ first ? DisableMergeAttribute::EnableAndMergeHeadBodyTail
+ : DisableMergeAttribute::None};
+ R_ASSERT(this->Operate(updater.GetPageList(), cur_address, cur_size / PageSize, 0,
+ false, properties, OperationType::ChangePermissions, true));
+ }
+ }
+ };
+
+ // Iterate, reprotecting as needed.
+ {
+ // Get current and next iterators.
+ KMemoryBlockManager::const_iterator start_it =
+ m_memory_block_manager.FindIterator(mapping_start);
+ KMemoryBlockManager::const_iterator next_it = start_it;
+ ++next_it;
+
+ // Validate the current block.
+ KMemoryInfo cur_info = start_it->GetMemoryInfo();
+ R_ASSERT(this->CheckMemoryState(
+ cur_info, test_state, test_state, KMemoryPermission::None, KMemoryPermission::None,
+ test_attr_mask | KMemoryAttribute::IpcLocked, KMemoryAttribute::IpcLocked));
+
+ // Create tracking variables.
+ KProcessAddress cur_address = cur_info.GetAddress();
+ size_t cur_size = cur_info.GetSize();
+ bool cur_perm_eq = cur_info.GetPermission() == cur_info.GetOriginalPermission();
+ bool cur_needs_set_perm = !cur_perm_eq && cur_info.GetIpcLockCount() == 1;
+ bool first =
+ cur_info.GetIpcDisableMergeCount() == 1 &&
+ False(cur_info.GetDisableMergeAttribute() & KMemoryBlockDisableMergeAttribute::Locked);
+
+ while ((cur_address + cur_size - 1) < mapping_last) {
+ // Check that we have a next block.
+ ASSERT(next_it != m_memory_block_manager.end());
+
+ // Get the next info.
+ const KMemoryInfo next_info = next_it->GetMemoryInfo();
+
+ // Validate the next block.
+ R_ASSERT(this->CheckMemoryState(
+ next_info, test_state, test_state, KMemoryPermission::None, KMemoryPermission::None,
+ test_attr_mask | KMemoryAttribute::IpcLocked, KMemoryAttribute::IpcLocked));
+
+ // Check if we can consolidate the next block's permission set with the current one.
+ const bool next_perm_eq =
+ next_info.GetPermission() == next_info.GetOriginalPermission();
+ const bool next_needs_set_perm = !next_perm_eq && next_info.GetIpcLockCount() == 1;
+ if (cur_perm_eq == next_perm_eq && cur_needs_set_perm == next_needs_set_perm &&
+ cur_info.GetOriginalPermission() == next_info.GetOriginalPermission()) {
+ // We can consolidate the reprotection for the current and next block into a single
+ // call.
+ cur_size += next_info.GetSize();
+ } else {
+ // We have to operate on the current block.
+ if ((cur_needs_set_perm || first) && !cur_perm_eq) {
+ const KPageProperties properties = {
+ cur_needs_set_perm ? cur_info.GetOriginalPermission()
+ : cur_info.GetPermission(),
+ false, false,
+ first ? DisableMergeAttribute::EnableHeadAndBody
+ : DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), cur_address, cur_size / PageSize, 0,
+ false, properties, OperationType::ChangePermissions,
+ false));
+ }
+
+ // Mark that we mapped the block.
+ mapped_size += cur_size;
+
+ // Advance.
+ cur_address = next_info.GetAddress();
+ cur_size = next_info.GetSize();
+ first = false;
+ }
+
+ // Advance.
+ cur_info = next_info;
+ cur_perm_eq = next_perm_eq;
+ cur_needs_set_perm = next_needs_set_perm;
+ ++next_it;
+ }
+
+ // Process the last block.
+ const auto lock_count =
+ cur_info.GetIpcLockCount() +
+ (next_it != m_memory_block_manager.end()
+ ? (next_it->GetIpcDisableMergeCount() - next_it->GetIpcLockCount())
+ : 0);
+ if ((first || cur_needs_set_perm || (lock_count == 1)) && !cur_perm_eq) {
+ const DisableMergeAttribute head_body_attr =
+ first ? DisableMergeAttribute::EnableHeadAndBody : DisableMergeAttribute::None;
+ const DisableMergeAttribute tail_attr =
+ lock_count == 1 ? DisableMergeAttribute::EnableTail : DisableMergeAttribute::None;
+ const KPageProperties properties = {
+ cur_needs_set_perm ? cur_info.GetOriginalPermission() : cur_info.GetPermission(),
+ false, false, static_cast<DisableMergeAttribute>(head_body_attr | tail_attr)};
+ R_TRY(this->Operate(updater.GetPageList(), cur_address, cur_size / PageSize, 0, false,
+ properties, OperationType::ChangePermissions, false));
+ }
+ }
+
+ // Create an update allocator.
+ // NOTE: Guaranteed zero blocks needed here.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, 0);
+ R_TRY(allocator_result);
+
+ // Unlock the pages.
+ m_memory_block_manager.UpdateLock(std::addressof(allocator), mapping_start,
+ mapping_size / PageSize, &KMemoryBlock::UnlockForIpc,
+ KMemoryPermission::None);
+
+ R_SUCCEED();
+}
+
+void KPageTableBase::CleanupForIpcClientOnServerSetupFailure(PageLinkedList* page_list,
+ KProcessAddress address, size_t size,
+ KMemoryPermission prot_perm) {
+ ASSERT(this->IsLockedByCurrentThread());
+ ASSERT(Common::IsAligned(GetInteger(address), PageSize));
+ ASSERT(Common::IsAligned(size, PageSize));
+
+ // Get the mapped extents.
+ const KProcessAddress src_map_start = address;
+ const KProcessAddress src_map_end = address + size;
+ const KProcessAddress src_map_last = src_map_end - 1;
+
+ // This function is only invoked when there's something to do.
+ ASSERT(src_map_end > src_map_start);
+
+ // Iterate over blocks, fixing permissions.
+ KMemoryBlockManager::const_iterator it = m_memory_block_manager.FindIterator(address);
+ while (true) {
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ const auto cur_start = info.GetAddress() >= GetInteger(src_map_start)
+ ? info.GetAddress()
+ : GetInteger(src_map_start);
+ const auto cur_end =
+ src_map_last <= info.GetLastAddress() ? src_map_end : info.GetEndAddress();
+
+ // If we can, fix the protections on the block.
+ if ((info.GetIpcLockCount() == 0 &&
+ (info.GetPermission() & KMemoryPermission::IpcLockChangeMask) != prot_perm) ||
+ (info.GetIpcLockCount() != 0 &&
+ (info.GetOriginalPermission() & KMemoryPermission::IpcLockChangeMask) != prot_perm)) {
+ // Check if we actually need to fix the protections on the block.
+ if (cur_end == src_map_end || info.GetAddress() <= GetInteger(src_map_start) ||
+ (info.GetPermission() & KMemoryPermission::IpcLockChangeMask) != prot_perm) {
+ const bool start_nc = (info.GetAddress() == GetInteger(src_map_start))
+ ? (False(info.GetDisableMergeAttribute() &
+ (KMemoryBlockDisableMergeAttribute::Locked |
+ KMemoryBlockDisableMergeAttribute::IpcLeft)))
+ : info.GetAddress() <= GetInteger(src_map_start);
+
+ const DisableMergeAttribute head_body_attr =
+ start_nc ? DisableMergeAttribute::EnableHeadAndBody
+ : DisableMergeAttribute::None;
+ DisableMergeAttribute tail_attr;
+ if (cur_end == src_map_end && info.GetEndAddress() == src_map_end) {
+ auto next_it = it;
+ ++next_it;
+
+ const auto lock_count =
+ info.GetIpcLockCount() +
+ (next_it != m_memory_block_manager.end()
+ ? (next_it->GetIpcDisableMergeCount() - next_it->GetIpcLockCount())
+ : 0);
+ tail_attr = lock_count == 0 ? DisableMergeAttribute::EnableTail
+ : DisableMergeAttribute::None;
+ } else {
+ tail_attr = DisableMergeAttribute::None;
+ }
+
+ const KPageProperties properties = {
+ info.GetPermission(), false, false,
+ static_cast<DisableMergeAttribute>(head_body_attr | tail_attr)};
+ R_ASSERT(this->Operate(page_list, cur_start, (cur_end - cur_start) / PageSize, 0,
+ false, properties, OperationType::ChangePermissions, true));
+ }
+ }
+
+ // If we're past the end of the region, we're done.
+ if (src_map_last <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ ++it;
+ ASSERT(it != m_memory_block_manager.end());
+ }
+}
+
+Result KPageTableBase::MapPhysicalMemory(KProcessAddress address, size_t size) {
+ // Lock the physical memory lock.
+ KScopedLightLock phys_lk(m_map_physical_memory_lock);
+
+ // Calculate the last address for convenience.
+ const KProcessAddress last_address = address + size - 1;
+
+ // Define iteration variables.
+ KProcessAddress cur_address;
+ size_t mapped_size;
+
+ // The entire mapping process can be retried.
+ while (true) {
+ // Check if the memory is already mapped.
+ {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Iterate over the memory.
+ cur_address = address;
+ mapped_size = 0;
+
+ auto it = m_memory_block_manager.FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != m_memory_block_manager.end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ if (info.GetState() != KMemoryState::Free) {
+ mapped_size += (last_address + 1 - cur_address);
+ }
+ break;
+ }
+
+ // Track the memory if it's mapped.
+ if (info.GetState() != KMemoryState::Free) {
+ mapped_size += KProcessAddress(info.GetEndAddress()) - cur_address;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+
+ // If the size mapped is the size requested, we've nothing to do.
+ R_SUCCEED_IF(size == mapped_size);
+ }
+
+ // Allocate and map the memory.
+ {
+ // Reserve the memory from the process resource limit.
+ KScopedResourceReservation memory_reservation(
+ m_resource_limit, Svc::LimitableResource::PhysicalMemoryMax, size - mapped_size);
+ R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
+
+ // Allocate pages for the new memory.
+ KPageGroup pg(m_kernel, m_block_info_manager);
+ R_TRY(m_kernel.MemoryManager().AllocateForProcess(
+ std::addressof(pg), (size - mapped_size) / PageSize, m_allocate_option,
+ GetCurrentProcess(m_kernel).GetId(), m_heap_fill_value));
+
+ // If we fail in the next bit (or retry), we need to cleanup the pages.
+ auto pg_guard = SCOPE_GUARD({
+ pg.OpenFirst();
+ pg.Close();
+ });
+
+ // Map the memory.
+ {
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ size_t num_allocator_blocks = 0;
+
+ // Verify that nobody has mapped memory since we first checked.
+ {
+ // Iterate over the memory.
+ size_t checked_mapped_size = 0;
+ cur_address = address;
+
+ auto it = m_memory_block_manager.FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != m_memory_block_manager.end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ const bool is_free = info.GetState() == KMemoryState::Free;
+ if (is_free) {
+ if (info.GetAddress() < GetInteger(address)) {
+ ++num_allocator_blocks;
+ }
+ if (last_address < info.GetLastAddress()) {
+ ++num_allocator_blocks;
+ }
+ }
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ if (!is_free) {
+ checked_mapped_size += (last_address + 1 - cur_address);
+ }
+ break;
+ }
+
+ // Track the memory if it's mapped.
+ if (!is_free) {
+ checked_mapped_size +=
+ KProcessAddress(info.GetEndAddress()) - cur_address;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+
+ // If the size now isn't what it was before, somebody mapped or unmapped
+ // concurrently. If this happened, retry.
+ if (mapped_size != checked_mapped_size) {
+ continue;
+ }
+ }
+
+ // Create an update allocator.
+ ASSERT(num_allocator_blocks <= KMemoryBlockManagerUpdateAllocator::MaxBlocks);
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager,
+ num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Prepare to iterate over the memory.
+ auto pg_it = pg.begin();
+ KPhysicalAddress pg_phys_addr = pg_it->GetAddress();
+ size_t pg_pages = pg_it->GetNumPages();
+
+ // Reset the current tracking address, and make sure we clean up on failure.
+ pg_guard.Cancel();
+ cur_address = address;
+ ON_RESULT_FAILURE {
+ if (cur_address > address) {
+ const KProcessAddress last_unmap_address = cur_address - 1;
+
+ // Iterate, unmapping the pages.
+ cur_address = address;
+
+ auto it = m_memory_block_manager.FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != m_memory_block_manager.end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // If the memory state is free, we mapped it and need to unmap it.
+ if (info.GetState() == KMemoryState::Free) {
+ // Determine the range to unmap.
+ const KPageProperties unmap_properties = {
+ KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ const size_t cur_pages =
+ std::min(KProcessAddress(info.GetEndAddress()) - cur_address,
+ last_unmap_address + 1 - cur_address) /
+ PageSize;
+
+ // Unmap.
+ R_ASSERT(this->Operate(updater.GetPageList(), cur_address,
+ cur_pages, 0, false, unmap_properties,
+ OperationType::Unmap, true));
+ }
+
+ // Check if we're done.
+ if (last_unmap_address <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+ }
+
+ // Release any remaining unmapped memory.
+ m_kernel.MemoryManager().OpenFirst(pg_phys_addr, pg_pages);
+ m_kernel.MemoryManager().Close(pg_phys_addr, pg_pages);
+ for (++pg_it; pg_it != pg.end(); ++pg_it) {
+ m_kernel.MemoryManager().OpenFirst(pg_it->GetAddress(),
+ pg_it->GetNumPages());
+ m_kernel.MemoryManager().Close(pg_it->GetAddress(), pg_it->GetNumPages());
+ }
+ };
+
+ auto it = m_memory_block_manager.FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != m_memory_block_manager.end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // If it's unmapped, we need to map it.
+ if (info.GetState() == KMemoryState::Free) {
+ // Determine the range to map.
+ const KPageProperties map_properties = {
+ KMemoryPermission::UserReadWrite, false, false,
+ cur_address == this->GetAliasRegionStart()
+ ? DisableMergeAttribute::DisableHead
+ : DisableMergeAttribute::None};
+ size_t map_pages =
+ std::min(KProcessAddress(info.GetEndAddress()) - cur_address,
+ last_address + 1 - cur_address) /
+ PageSize;
+
+ // While we have pages to map, map them.
+ {
+ // Create a page group for the current mapping range.
+ KPageGroup cur_pg(m_kernel, m_block_info_manager);
+ {
+ ON_RESULT_FAILURE_2 {
+ cur_pg.OpenFirst();
+ cur_pg.Close();
+ };
+
+ size_t remain_pages = map_pages;
+ while (remain_pages > 0) {
+ // Check if we're at the end of the physical block.
+ if (pg_pages == 0) {
+ // Ensure there are more pages to map.
+ ASSERT(pg_it != pg.end());
+
+ // Advance our physical block.
+ ++pg_it;
+ pg_phys_addr = pg_it->GetAddress();
+ pg_pages = pg_it->GetNumPages();
+ }
+
+ // Add whatever we can to the current block.
+ const size_t cur_pages = std::min(pg_pages, remain_pages);
+ R_TRY(cur_pg.AddBlock(pg_phys_addr +
+ ((pg_pages - cur_pages) * PageSize),
+ cur_pages));
+
+ // Advance.
+ remain_pages -= cur_pages;
+ pg_pages -= cur_pages;
+ }
+ }
+
+ // Map the papges.
+ R_TRY(this->Operate(updater.GetPageList(), cur_address, map_pages,
+ cur_pg, map_properties,
+ OperationType::MapFirstGroup, false));
+ }
+ }
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+
+ // We succeeded, so commit the memory reservation.
+ memory_reservation.Commit();
+
+ // Increase our tracked mapped size.
+ m_mapped_physical_memory_size += (size - mapped_size);
+
+ // Update the relevant memory blocks.
+ m_memory_block_manager.UpdateIfMatch(
+ std::addressof(allocator), address, size / PageSize, KMemoryState::Free,
+ KMemoryPermission::None, KMemoryAttribute::None, KMemoryState::Normal,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::None,
+ address == this->GetAliasRegionStart()
+ ? KMemoryBlockDisableMergeAttribute::Normal
+ : KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::None);
+
+ R_SUCCEED();
+ }
+ }
+ }
+}
+
+Result KPageTableBase::UnmapPhysicalMemory(KProcessAddress address, size_t size) {
+ // Lock the physical memory lock.
+ KScopedLightLock phys_lk(m_map_physical_memory_lock);
+
+ // Lock the table.
+ KScopedLightLock lk(m_general_lock);
+
+ // Calculate the last address for convenience.
+ const KProcessAddress last_address = address + size - 1;
+
+ // Define iteration variables.
+ KProcessAddress map_start_address = 0;
+ KProcessAddress map_last_address = 0;
+
+ KProcessAddress cur_address;
+ size_t mapped_size;
+ size_t num_allocator_blocks = 0;
+
+ // Check if the memory is mapped.
+ {
+ // Iterate over the memory.
+ cur_address = address;
+ mapped_size = 0;
+
+ auto it = m_memory_block_manager.FindIterator(cur_address);
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != m_memory_block_manager.end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // Verify the memory's state.
+ const bool is_normal = info.GetState() == KMemoryState::Normal &&
+ info.GetAttribute() == KMemoryAttribute::None;
+ const bool is_free = info.GetState() == KMemoryState::Free;
+ R_UNLESS(is_normal || is_free, ResultInvalidCurrentMemory);
+
+ if (is_normal) {
+ R_UNLESS(info.GetAttribute() == KMemoryAttribute::None, ResultInvalidCurrentMemory);
+
+ if (map_start_address == 0) {
+ map_start_address = cur_address;
+ }
+ map_last_address =
+ (last_address >= info.GetLastAddress()) ? info.GetLastAddress() : last_address;
+
+ if (info.GetAddress() < GetInteger(address)) {
+ ++num_allocator_blocks;
+ }
+ if (last_address < info.GetLastAddress()) {
+ ++num_allocator_blocks;
+ }
+
+ mapped_size += (map_last_address + 1 - cur_address);
+ }
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+
+ // If there's nothing mapped, we've nothing to do.
+ R_SUCCEED_IF(mapped_size == 0);
+ }
+
+ // Create an update allocator.
+ ASSERT(num_allocator_blocks <= KMemoryBlockManagerUpdateAllocator::MaxBlocks);
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Separate the mapping.
+ const KPageProperties sep_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), map_start_address,
+ (map_last_address + 1 - map_start_address) / PageSize, 0, false,
+ sep_properties, OperationType::Separate, false));
+
+ // Reset the current tracking address, and make sure we clean up on failure.
+ cur_address = address;
+
+ // Iterate over the memory, unmapping as we go.
+ auto it = m_memory_block_manager.FindIterator(cur_address);
+
+ const auto clear_merge_attr =
+ (it->GetState() == KMemoryState::Normal &&
+ it->GetAddress() == this->GetAliasRegionStart() && it->GetAddress() == address)
+ ? KMemoryBlockDisableMergeAttribute::Normal
+ : KMemoryBlockDisableMergeAttribute::None;
+
+ while (true) {
+ // Check that the iterator is valid.
+ ASSERT(it != m_memory_block_manager.end());
+
+ // Get the memory info.
+ const KMemoryInfo info = it->GetMemoryInfo();
+
+ // If the memory state is normal, we need to unmap it.
+ if (info.GetState() == KMemoryState::Normal) {
+ // Determine the range to unmap.
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ const size_t cur_pages = std::min(KProcessAddress(info.GetEndAddress()) - cur_address,
+ last_address + 1 - cur_address) /
+ PageSize;
+
+ // Unmap.
+ R_ASSERT(this->Operate(updater.GetPageList(), cur_address, cur_pages, 0, false,
+ unmap_properties, OperationType::Unmap, false));
+ }
+
+ // Check if we're done.
+ if (last_address <= info.GetLastAddress()) {
+ break;
+ }
+
+ // Advance.
+ cur_address = info.GetEndAddress();
+ ++it;
+ }
+
+ // Release the memory resource.
+ m_mapped_physical_memory_size -= mapped_size;
+ m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, mapped_size);
+
+ // Update memory blocks.
+ m_memory_block_manager.Update(std::addressof(allocator), address, size / PageSize,
+ KMemoryState::Free, KMemoryPermission::None,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
+ clear_merge_attr);
+
+ // We succeeded.
+ R_SUCCEED();
+}
+
+Result KPageTableBase::MapPhysicalMemoryUnsafe(KProcessAddress address, size_t size) {
+ UNIMPLEMENTED();
+ R_THROW(ResultNotImplemented);
+}
+
+Result KPageTableBase::UnmapPhysicalMemoryUnsafe(KProcessAddress address, size_t size) {
+ UNIMPLEMENTED();
+ R_THROW(ResultNotImplemented);
+}
+
+Result KPageTableBase::UnmapProcessMemory(KProcessAddress dst_address, size_t size,
+ KPageTableBase& src_page_table,
+ KProcessAddress src_address) {
+ // We need to lock both this table, and the current process's table, so set up an alias.
+ KPageTableBase& dst_page_table = *this;
+
+ // Acquire the table locks.
+ KScopedLightLockPair lk(src_page_table.m_general_lock, dst_page_table.m_general_lock);
+
+ // Check that the memory is mapped in the destination process.
+ size_t num_allocator_blocks;
+ R_TRY(dst_page_table.CheckMemoryState(
+ std::addressof(num_allocator_blocks), dst_address, size, KMemoryState::All,
+ KMemoryState::SharedCode, KMemoryPermission::UserReadWrite,
+ KMemoryPermission::UserReadWrite, KMemoryAttribute::All, KMemoryAttribute::None));
+
+ // Check that the memory is mapped in the source process.
+ R_TRY(src_page_table.CheckMemoryState(src_address, size, KMemoryState::FlagCanMapProcess,
+ KMemoryState::FlagCanMapProcess, KMemoryPermission::None,
+ KMemoryPermission::None, KMemoryAttribute::All,
+ KMemoryAttribute::None));
+
+ // Validate that the memory ranges are compatible.
+ {
+ // Define a helper type.
+ struct ContiguousRangeInfo {
+ public:
+ KPageTableBase& m_pt;
+ TraversalContext m_context;
+ TraversalEntry m_entry;
+ KPhysicalAddress m_phys_addr;
+ size_t m_cur_size;
+ size_t m_remaining_size;
+
+ public:
+ ContiguousRangeInfo(KPageTableBase& pt, KProcessAddress address, size_t size)
+ : m_pt(pt), m_remaining_size(size) {
+ // Begin a traversal.
+ ASSERT(m_pt.GetImpl().BeginTraversal(std::addressof(m_entry),
+ std::addressof(m_context), address));
+
+ // Setup tracking fields.
+ m_phys_addr = m_entry.phys_addr;
+ m_cur_size = std::min<size_t>(
+ m_remaining_size,
+ m_entry.block_size - (GetInteger(m_phys_addr) & (m_entry.block_size - 1)));
+
+ // Consume the whole contiguous block.
+ this->DetermineContiguousBlockExtents();
+ }
+
+ void ContinueTraversal() {
+ // Update our remaining size.
+ m_remaining_size = m_remaining_size - m_cur_size;
+
+ // Update our tracking fields.
+ if (m_remaining_size > 0) {
+ m_phys_addr = m_entry.phys_addr;
+ m_cur_size = std::min<size_t>(m_remaining_size, m_entry.block_size);
+
+ // Consume the whole contiguous block.
+ this->DetermineContiguousBlockExtents();
+ }
+ }
+
+ private:
+ void DetermineContiguousBlockExtents() {
+ // Continue traversing until we're not contiguous, or we have enough.
+ while (m_cur_size < m_remaining_size) {
+ ASSERT(m_pt.GetImpl().ContinueTraversal(std::addressof(m_entry),
+ std::addressof(m_context)));
+
+ // If we're not contiguous, we're done.
+ if (m_entry.phys_addr != m_phys_addr + m_cur_size) {
+ break;
+ }
+
+ // Update our current size.
+ m_cur_size = std::min(m_remaining_size, m_cur_size + m_entry.block_size);
+ }
+ }
+ };
+
+ // Create ranges for both tables.
+ ContiguousRangeInfo src_range(src_page_table, src_address, size);
+ ContiguousRangeInfo dst_range(dst_page_table, dst_address, size);
+
+ // Validate the ranges.
+ while (src_range.m_remaining_size > 0 && dst_range.m_remaining_size > 0) {
+ R_UNLESS(src_range.m_phys_addr == dst_range.m_phys_addr, ResultInvalidMemoryRegion);
+ R_UNLESS(src_range.m_cur_size == dst_range.m_cur_size, ResultInvalidMemoryRegion);
+
+ src_range.ContinueTraversal();
+ dst_range.ContinueTraversal();
+ }
+ }
+
+ // We no longer need to hold our lock on the source page table.
+ lk.TryUnlockHalf(src_page_table.m_general_lock);
+
+ // Create an update allocator.
+ Result allocator_result;
+ KMemoryBlockManagerUpdateAllocator allocator(std::addressof(allocator_result),
+ m_memory_block_slab_manager, num_allocator_blocks);
+ R_TRY(allocator_result);
+
+ // We're going to perform an update, so create a helper.
+ KScopedPageTableUpdater updater(this);
+
+ // Unmap the memory.
+ const size_t num_pages = size / PageSize;
+ const KPageProperties unmap_properties = {KMemoryPermission::None, false, false,
+ DisableMergeAttribute::None};
+ R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, 0, false, unmap_properties,
+ OperationType::Unmap, false));
+
+ // Apply the memory block update.
+ m_memory_block_manager.Update(std::addressof(allocator), dst_address, num_pages,
+ KMemoryState::Free, KMemoryPermission::None,
+ KMemoryAttribute::None, KMemoryBlockDisableMergeAttribute::None,
+ KMemoryBlockDisableMergeAttribute::Normal);
+
+ R_SUCCEED();
+}
+
+Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_addr,
+ size_t num_pages, KPhysicalAddress phys_addr, bool is_pa_valid,
+ const KPageProperties properties, OperationType operation,
+ bool reuse_ll) {
+ ASSERT(this->IsLockedByCurrentThread());
+ ASSERT(num_pages > 0);
+ ASSERT(Common::IsAligned(GetInteger(virt_addr), PageSize));
+ ASSERT(this->ContainsPages(virt_addr, num_pages));
+
+ // As we don't allocate page entries in guest memory, we don't need to allocate them from
+ // or free them to the page list, and so it goes unused (along with page properties).
+
+ switch (operation) {
+ case OperationType::Unmap: {
+ // Ensure that any pages we track are closed on exit.
+ KPageGroup pages_to_close(m_kernel, this->GetBlockInfoManager());
+ SCOPE_EXIT({ pages_to_close.CloseAndReset(); });
+
+ // Make a page group representing the region to unmap.
+ this->MakePageGroup(pages_to_close, virt_addr, num_pages);
+
+ // Unmap.
+ m_memory->UnmapRegion(*m_impl, virt_addr, num_pages * PageSize);
+
+ R_SUCCEED();
+ }
+ case OperationType::Map: {
+ ASSERT(virt_addr != 0);
+ ASSERT(Common::IsAligned(GetInteger(virt_addr), PageSize));
+ m_memory->MapMemoryRegion(*m_impl, virt_addr, num_pages * PageSize, phys_addr);
+
+ // Open references to pages, if we should.
+ if (this->IsHeapPhysicalAddress(phys_addr)) {
+ m_kernel.MemoryManager().Open(phys_addr, num_pages);
+ }
+
+ R_SUCCEED();
+ }
+ case OperationType::Separate: {
+ // TODO: Unimplemented.
+ R_SUCCEED();
+ }
+ case OperationType::ChangePermissions:
+ case OperationType::ChangePermissionsAndRefresh:
+ case OperationType::ChangePermissionsAndRefreshAndFlush:
+ R_SUCCEED();
+ default:
+ UNREACHABLE();
+ }
+}
+
+Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_addr,
+ size_t num_pages, const KPageGroup& page_group,
+ const KPageProperties properties, OperationType operation,
+ bool reuse_ll) {
+ ASSERT(this->IsLockedByCurrentThread());
+ ASSERT(Common::IsAligned(GetInteger(virt_addr), PageSize));
+ ASSERT(num_pages > 0);
+ ASSERT(num_pages == page_group.GetNumPages());
+
+ // As we don't allocate page entries in guest memory, we don't need to allocate them from
+ // the page list, and so it goes unused (along with page properties).
+
+ switch (operation) {
+ case OperationType::MapGroup:
+ case OperationType::MapFirstGroup: {
+ // We want to maintain a new reference to every page in the group.
+ KScopedPageGroup spg(page_group, operation != OperationType::MapFirstGroup);
+
+ for (const auto& node : page_group) {
+ const size_t size{node.GetNumPages() * PageSize};
+
+ // Map the pages.
+ m_memory->MapMemoryRegion(*m_impl, virt_addr, size, node.GetAddress());
+
+ virt_addr += size;
+ }
+
+ // We succeeded! We want to persist the reference to the pages.
+ spg.CancelClose();
+
+ R_SUCCEED();
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+void KPageTableBase::FinalizeUpdate(PageLinkedList* page_list) {
+ while (page_list->Peek()) {
+ [[maybe_unused]] auto page = page_list->Pop();
+
+ // TODO: Free page entries once they are allocated in guest memory.
+ // ASSERT(this->GetPageTableManager().IsInPageTableHeap(page));
+ // ASSERT(this->GetPageTableManager().GetRefCount(page) == 0);
+ // this->GetPageTableManager().Free(page);
+ }
+}
+
+} // namespace Kernel